

Criterion 1 – Curricular Aspects

Key Indicator

1.1 Curriculum Design and Development

Metric

1.1.3 Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the Computer Science and Applications

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
i.	Bachelor of Computer Applications (Full Time)
ii.	Master of Computer Applications(Full Time)

2. Syllabus of the courses as per the list.

Legend Words highlighted with Blue -

Color

Words highlighted with **Red Color** - Words highlighted with **Purple** -

Color

- Entrepreneurship

Employability

Skill Development

1. List of Courses

Course Code	Name of the Course	Year of introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development		
		BCA			
	2020-21 ACADEMI	C YEAR (OD	D and EVEN)		
XGL101	XGL101 Communication Skills in English 2018-2019 Skill development - Group Discussion , Spoken and Write communication				
XGL102A / XGL102B	Ariviyal Tamil / Comprehensive English	2017-2018	Skill development - Group Discussion , Spoken and Written communication		
XCA103	C Programming	2015-2016	Employability: Improving programming skill of students		
XCA104	Algebra, Calculus and Analytical Geometry	2015-2016	Skill development: -Solving the real world problem by mathematically		
XCA105	Computer Organization and Architecture	2015-2016	Employability: Improving programming skill of students		
XUM106	Human Ethics, Values, Rights and Gender Equality	2014-2015	Skill development: -Solving the real world problem by ethics		
XGL201	English for Effective Communication	2020-2021	Skill development - Group Discussion , Spoken and Written communication		
XES202	Environmental Studies	2015-2016	Skill development: -Solving the real world problem by understading environment		
XCA203	Object Oriented Programming with C++	2015-2016	Employability: Improving programming skill of students		
XCA204	Discrete Mathematics	2015-2016	Skill development: -Solving the real world problem by mathematically		
XCA205	Computer Networks	2018-2019	Employability: Improving programming skill of students		
XCA206	Data Structures and Algorithms	2015-2016	Employability: Improving programming skill of students		
XCA301	HTML and DHTML	2016-2017	Employability: Improving programming skill of students		
XCA302	Database Management Systems	2015-2016	Employability: Improving programming skill of students		
XCA303	Visual Programming	2016-2017	Employability: Improving programming skill of students		

XCA304	Statistical and Numerical Methods	2015-2016	Skill development: -Solving the real world problem by mathematically
OE	Open Elective	2015-2016	*****
XUM306	Disaster Management	2019-2020	Skill development: -Solving the real world problem by understading environment
XCA307	Web Technology	2016-2017	Employability: Improving programming skill of students
XCA401	Data Analytics	2019-2020	Employability: Improving programming skill of students
XCA402	Java Programming	2016-2017	Employability: Improving programming skill of students
XCA403	Resource Management Techniques	2015-2016	Skill development: -Solving the real world problem by mathematically
XCA404	Operating Systems	2015-2016	Employability: Improving programming skill of students
OE	Open Elective	2015-2016	*****
XCA405	Software Testing Tools and Practices	2019-2020	Employability: Improving programming skill of students
XCA501	XML and Web Services	2016-2017	Employability: Improving programming skill of students
XCA502A	Software Engineering	2016-2017	Employability: Improving programming skill of students
XCA503A	Unix and Shell Programming	2015-2016	Employability: Improving programming skill of students
XCA504A	Enterprise Resource Planning	2017-2018	Entrepreneurship: Improving Entrepreneurship skills in business
OE	Open Elective	2019-2020	****
XCA505	Android App Development - Mobile Technology	2019-2020	Employability: Improving programming skill of students
XCA506	Inplant Training	217-2018	Employability: Improving programming skill of students
XCA601	Introduction to Graphics Design	2016-2017	Employability: Improving programming skill of students
XCA602A	.Net Technologies	2016-2017	Employability: Improving programming skill of students

XCA603A	Mobile Computing	2017-2018	Employability: Improving programming skill of students
XCA604	Project Work	2020-2021	Employability: Improving programming skill of students

	MCA					
	2020-21 ACADEMI	C YEAR (OD	D and EVEN)			
YCA101	Database Management Systems	2019-2020	Employability: Improving programming skill of students			
YCA102	Computer Networks	2020-2021	Employability: Improving programming skill of students			
YCA103	Object Oriented Programming, Analysis and Design	2019-2020	Employability: Improving programming skill of students			
YCA104	Management Support Systems	2019-2020	Employability: Improving programming skill of students			
YCA105	Mathematical Foundation for Computer Applications	2020-2021	Employability: Improving programming skill of students			
YCA106	Database Management Systems Lab	2019-2020	Employability: Improving programming skill of students			
YCA107	Mathematical Foundation for Computer Applications Lab using Java	2020-2021	Employability: Improving presentation skill of students			
YCA201	Advanced Operating System Concepts	2014-2015	Employability: Improving programming skill of students			
YCA202	Software Engineering	2019-2020	Employability: Improving programming skill of students			
YCAEE1	Data Mining and Data Warehousing	2014-2015	Employability: Improving programming skill of students			
YCA203	Advanced Data Structures	2020-2021	Employability: Improving programming skill of students			
YCABM4	Investment Technology	2019-2020	Employability: Improving programming skill of students			
YCA205	Advanced Operating System Concepts Lab	2020-2021	Employability: Improving programming skill of students			
YCA206	Case Tools Lab	2019-2020	Employability: Improving programming skill of students			
YCA301	Artificial Intelligence and Machine Learning	2020-2021	Employability: Improving programming skill of students			

YCA302	Graphics and Multimedia	2015-2016	Employability: Improving programming skill of students
YCAEE1	Data Mining and Data Warehousing	2014-2015	Employability: Improving programming skill of students
YCABM4	Investment Technology	2019-2020	Employability: Improving programming skill of students
YCA303	Optimization Techniques	2020-2021	Employability: Improving programming skill of students
YCA304	Artificial Intelligence and Machine Learning Lab using Python	2020-2021	Employability: Improving programming skill of students
YCA305	Optimization Techniques Lab	2020-2021	Employability: Improving programming skill of students
YCA306	Industrials Lectures	2020-2021	Employability: Improving programming skill of students
YCA307	Mini Project	2020-2021	Employability: Improving programming skill of students
YCA401	Research Methodology(Paper Publications)	2020-2021	Employability: Improving programming skill of students
YCA402	Project	2013-2014	Employability: Improving programming skill of students

2. Syllabus of Courses

XCA103 C PROGRAMMING

Course Outcomes:

CO1	C	Knowledge	Describe the concept of C programming and its fundamental
CO2	C	Understand, Apply	<i>illustrate</i> and <i>implement</i> various control statements and arrays
	P	Guided Response	Build an application program using various controls statements and arrays
CO3	C	Understand,	Differentiate and Implement structures and unions
	P	Apply Guided Response	Develop an application program using structures and unions
CO4	C	Understand,	Explain and Implement the pointer concepts
	P	Guided Response	Develop an application program using structures and unions
CO5	C P	Understand, Adapt	Develop a program to create and process a file for different applications

COURSE CODE	COURSE NAME	L	T	P	С
XCA103	C PROGRAMMING	4	0	1	5
C:P:A = 4:1:0					
		\mathbf{L}	Т	P	Н
PREREQUISITE	Nil	4	0	2	6
UNIT- I : INTRODU	CTION TO C LANGUAGE			12+6	-)

C Language - History of C - Features of C - Structure of a C Program -Pre-processors-# define- # include-Writing a C Program - Compiling and Linking a C Program - C compiler - syntax and semantic errors - link and run the C program - linker errors - logical and runtime errors - Constants, Variables and Data Types - storage - qualifiers - Operators and Expressions - Input/Output Operations - unformatted I/O - formatted I/O Lab:

- 1. Program to implement formatted I/O operations
- 2.Program to implement unformatted I/O operations

UNIT- II: CONTROL STATEMENTS AND ARRAYS

12+6

Control Statements - if statement - switch statement - Loop Control Statements - while loop - do-while statement - for loop - Un-conditional Controls - goto statement - break statement - continue Statement - Arrays - multi-dimensional arrays - Character arrays and Strings - dynamic arrays

Lab:

- 1. Program to implement control structures
- 2.Program to implement one dimensional and two dimensional arrays

UNIT- III: FUNCTIONS, STRUCTURE AND UNIONS

12+6

Functions - User defined Functions - Call by value, Call by reference Categories of Functions - Recursion. Structures - declaration, definition- accessing the members of a structure - initializing structures - structures as function arguments - structures and arrays - Unions - dynamic memory allocation - malloc(), calloc(), realloc(), free()
Lab:

1. Program to implement calling the function through call by value method&call by reference

2. Program to implement Structures

UNIT- IV: POINTERS

12+6

Pointers: Introduction-Understanding pointers-Accessing the address of a variable-Declaration and Initialization of pointer Variable – Accessing a variable through its pointer-Pointer Expressions – Pointers and Arrays- Pointers and Strings – Array of pointers – Pointers as Function Arguments- Functions returning pointers – Pointers to Functions – Pointers and Structures.

Lab:

- 1. Program to implement dynamic memory allocation
- 2. Program to implement pointer to function
- 3. Program to implement an array of pointers

UNIT- V: FILE PROCESSING

12+6

File Management in C – Definition of Files- Opening modes of files- Standard function: fopen(), fclose(), feof(), fseek(),fewind()-fgetc(), fputc(), fscanf()-program using files Lab:

- 1. Program to implement various file operations in a standard file
- 2. Program to implement various file operations in text file

LECTURE	TUTORIAL	PRACTIC AL	TOTAL
60	0	30	90

TEXT

1. E Balagurusamy: Computing Fundamentals & C Programming | − Tata McGraw-Hill, Second Reprint 2008, ISBN 978-0-07-066909-3.

REFERENCES

- 1. YashwantKanetker, Let us C, BPB Publications.
- 2. R. B. Patel, Fundamental of Computers and Programming in C, Khanna Book Publishing Company PVT. LTD. Delhi, India, 1st edition, 2008, ISBN: 13: 978-81-906988-7-0.
- 3. Gottfried, Programming with C, Tata McGraw Hill.
- 4. Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, 2nd Ed., PHI.

E REFERENCES

- 1. NPTEL, Introduction to C Programming, Prof.SatyadevNandakumar ,IIT, Computer Science and Engineering Kanpur.
- 2. NPTEL, Introduction to Problem Solving & Programming, by Prof. Deepak Gupta Department of Computer Science and Engineering IIT Kanpur.

	PO	PSO	PSO						
	1	2	3	4	5	6	7	8	9
CO 1	3	2	2	1	1	1	1	2	1
CO 2	3	2	2	1	1	1	1	2	1
CO 3	3	2	2	1	1	1	1	1	1
CO 4	3	2	2	1	1	1	1	1	1
CO 5	2	2	2	1	1	1	1	1	1
Total	14	10	10	5	5	5	5	7	5
Cours	3	2	2	1	1	1	1	2	1
e									

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA 104 ALGEBRA, CALCULUS AND ANALYTICAL GEOMETRY

Course Outcome:

CO1	C	Remembering Understanding	<i>Explain</i> and <i>Find</i> derivative functions indifferential calculus.
CO2	C	Applying	Solve the definite and indefinite integrals using various techniques.
CO3	C	Applying	Apply orthogonal transformation todetermineeigen values and eigen vectors of a given matrix.
CO4	C	Applying	Solve problems using Binomial, exponential and logarithmic series expansions.
CO5	C	Remembering Applying	<i>Find</i> the distance between two points and <i>Explain</i> section formulae, slopeform and intercept form.

COURSE CODE	COURSE NAME	L	Т	P	C
X CA 104	ALGEBRA, CALCULUS AND	4	1	0	5
	ANALYTICAL GEOMETRY				
C:P:A = 5:0:0					
		L	Т	P	Н
PREREQUISITE	Basic Mathematics	4	1	0	5
UNIT- I:DIFFERI	ENTIAL CALCULUS				15

Derivative of a function – Various formulae – Product and quotient rule of differentiation – Differentiation of function of function (chain rule) – Trigonometric functions – Inverse trigonometric functions – Exponential function – Logarithmic functions – Logarithmic differentiation – Higher derivatives – Successive differentiation – Liebnitz theorem.

UNIT-II: INTEGRAL CALCULUS

15

Constant of integration – Indefinite integral – Elementary integral formulae – Methods of integration – Integration by substitution - Integration by parts - Integration through partial fractions – Concept of definite integral – Properties of definite integral

UNIT- III: MATRICES AND DETERMINANTS

15

Definition and types of matrices – Matrix Operation – Determinants – Solution of system of linear equations by Matrix method.

UNIT- IV: SERIES

15

Binomial theorem for a rational index – Exponential and Logarithmic series – Summation of the above series

UNIT -V: TWO DIMENSIONAL ANALYTICAL GEOMETRY

15

Cartesian coordinate system – Introduction to polar coordinates – Distance between two points – Section formulae – Area of triangle – Locus and its equations – Straight line: Equation of a straight line parallel to an axis – slope form –normal form - Intercept form through two point -condition of concurrency of three lines.

LECTURE	TUTORIAL	TOTAL
60	15	7 5

TEXT BOOKS

- 1.T. K. Manicavachagom Pillay, T. Natarajan, K. S. Ganapathy, Algebra, Volume I, S. Vishvanathan Printers and Publishers Pvt., Ltd, Chennai 2004.
- 2. S.Naravanan, T.K.Manicavachagam Pillay, S.Vishvanathan, Calculus volume I & II Printers and Publishers Pvt., Ltd, Chennai 2009,9th edition

REFERENCES

1. P.Kandasamy&K.Thilagavathi, B.Sc Mathematics for branch I – Vol I & Vol II, S.Chand& Co, 2004.

E REFERENCES

- 1. Advanced Engineering Mathematics Prof. PratimaPanigrahi
- 2. Department of Mathematics Indian Institute of Technology, Kharagpur.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	1	0	0	1	0	1	0	0
CO 2	3	1	0	0	1	0	1	0	0
CO 3	3	1	0	0	1	0	1	0	0
CO 4	3	1	0	0	1	0	1	0	0
CO 5	3	1	0	0	1	0	1	0	0
Total	15	5	0	0	5	0	5	0	0
Course	3	1	0	0	1	0	1	0	0

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

XCA 105 COMPUTER ORGANIZATION AND ARCHITECTURE

Course Outcomes:

CO1	C	Knowledge	Demonstrate basic number systems, Boolean expression
			simplification and logic gates manipulation
CO2	C	Understand	Explain the functions of various components in digital system
CO3	C	Knowledge	Describe general Instruction types, formats, addressing modes
			and organization
CO4	C	Understand	Summarize various modes of Data transfer and interface
CO5	C	Knowledge	Classifies memory organization and management

COURSE CODE	COURSE NAME	L	T	P	C
XCA 105	COMPUTER ORGANIZATION AND	3	2	0	5
	ARCHITECTURE				
C:P:A = 5:0:0					
		L	T	P	Н
PREREQUISITE	Number system	3	2	0	5
LINIT -I-NUMBER S	SYSTEM AND BOOLEAN LOGIC	***************************************	•		15

UMBER SYSTEM AND BOOLEAN LOGIC

Introduction: Simple Computer Organization - Number System - Data Representation -Complements - Subtraction of unsigned numbers- Arithmetic Addition and Subtraction Boolean Algebra - Truth Tables -Logic Gates - Map Simplification- Other Binary codes-Error detection codes

UNIT- II: COMBINATIONAL AND SEQUENTIAL CIRCUIT

15

Combinational Circuit - Half adder, Full Adder - Decoders - Multiplexer - Sequential circuit - Flip Flops: RS, JK, D, T Flip Flops – Excitation Table – Master / Slave Flip Flop- Registers Counters.

UNIT- III: INSTRUCTION FORMATS AND TYPES

15

Instruction codes - Computer Registers- Basic Computer Instructions-Components of CPU-General Register Organization – Instruction Format – Instruction Type - Addressing Modes - Memory Reference Instructions - Data Transfer and ManipulationInstruction - Shift Instruction.

UNIT -IV: INPUT OUTPUT ORGANIZATION

15

Peripheral Devices – Input Interface – I/O Bus and Interface modules- Asynchronous Data Transfer – Modes of Transfer – Direct Memory Access.

UNIT- V: MEMORY ORGANIZATION

15

Memory Hierarchy - Main Memory - Auxiliary Memory - Associative Memory - Cache -Virtual Memory.

LECTURE	TUTORIAL	TOTAL
45	30	7 5

TEXT

- 1. M.Morris Mano "Computer System Architecture", Pearson Education, Third Edition
- 2. M.Morris Mano "Digital Logic and Computer Design", Pearson Education, 1979, Tenth Impression: 2008.

REFERENCES

- 1. William Stallings, "Computer Organization and Architecture - Designing for Performance", Eighth Edition, 2010.
- 2. Thomas C.Bartee, "Computer Organization and Digital Logic" Pearson Education, Seventh Edition, 2006.
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw-Hill.

E REFERENCES

- 1. NPTEL, Computer Architecture, Prof. Anshul Kumar, Department of Computer Science &Engineering ,IIT Delhi.
- 2. NPTEL, Digital Computer Organization by Prof.P.K. Biswas, Department of Electronics and Electrical Communication Engineering, IIT Kharagpur.

	PO1	PO	PO	PO	PO	PO	PO	PSO	PSO
		2	3	4	5	6	7	8	9
CO 1	3	3	2	2	2	1	1	2	2
CO 2	3	3	2	2	2	1	1	2	2
CO 3	3	3	2	2	2	1	1	2	2
CO 4	3	2	2	2	2	1	1	2	2
CO 5	2	2	2	2	2	1	1	2	2
Total	14	13	10	10	10	5	5	10	10
Course	3	3	2	2	2	1	1	2	2

XUM106 HUMAN ETHICS, VALUES, RIGHTS AND GENDER EQUALITY

Course Outcomes:

CO1	C	Remember	Relate and Interpret the human ethics and human relationships
CO2	\mathbf{C}	Understanding,	Explain and Apply gender issues, equality and violence
		Applying	against women
CO3	C	Analyzing,	Classify and Develop the identify of human rights and their
	A	Receiving	violations
CO4	C	Understanding,	Classify and Dissect necessity of human rights and report on
	A	Analyze	violations.
CO5	C	Remember,	<i>List</i> and respond to family values, universal brotherhood, fight
	A	Respond	against corruption by common man and good governance.

COURSE CODE	COURSE NAME	L	,	Γ	Р	С
XUM 106	HUMAN ETHICS, VALUES, RIGHTS AND GENDER EQUALITY	3		0	0	0
C:P:A =0:0:0		L	Т	P	S S	H
PREREQUISITE	Nil	1	0	0	2	3
IINIT_I.HIIMAN	JETHICS AND VALUES					03

UNIT -1:HUMAN ETHICS AND VALUES

Human Ethics and values - Understanding of oneself and others- motives and needs- Social service, Social Justice, Dignity and worth, Harmony in human relationship: Family and Society, Integrity and Competence, Caring and Sharing, Honesty and Courage, WHO's holistic development - Valuing Time, Co-operation, Commitment, Sympathy and Empathy, Self respect, Self-Confidence, character building and Personality.

UNIT- II: GENDER EQUALITY

Gender Equality - Gender Vs Sex, Concepts, definition, Gender equity, equality, and empowerment. Status of Women in India Social, Economical, Education, Health, Employment, HDI, GDI, GEM. Contributions of Dr.B.R. Ambetkar, ThanthaiPeriyar and Phule to Women Empowerment.

UNIT- III: WOMEN ISSUES AND CHALLENGES

03

Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures - Acts related to women: Political Right, Property Rights, Right to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act.

UNIT-IV: HUMAN RIGHTS

03

Human Rights Movement in India – The preamble to the Constitution of India, Human Rights and Duties, Universal Declaration of Human Rights (UDHR), Civil, Political, Economical, Social and Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights of Children. National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness. - Intellectual Property Rights (IPR). National Policy on occupational safety, occupational health and working environment.

Good Governance - Democracy, People's Participation, Transparency in governance and audit, Corruption, Impact of corruption on society, whom to make corruption complaints, fight against corruption and related issues, Fairness in criminal justice administration, Government system of Redressal. Creation of People friendly environment and universal brotherhood.

LECTURE	TOTAL
15	15

REFERENCES

- 1. Aftab A, (Ed.), Human Rights in India: Issues and Challenges, (New Delhi: Raj Publications, 2012).
- 2. Veeramani, K. (ed) Periyar Feminism, (PeriyarManiammai University, Vallam, Thanjavur: 2010).
- 3. Planning Commission report on Occupational Health and Safety http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.p
- 4. Central Vigilance Commission (Gov. of India) website: http://cvc.nic.in/welcome.html.
- 5. Weblink of Transparency International: https://www.transparency.org/
- 6. Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	0	0	0	0	2	2	1	0	0
CO 2	0	0	0	0	2	2	0	0	0
CO 3	0	0	0	0	0	2	0	0	0
CO 4	0	0	0	0	0	2	1	0	0
CO 5	0	0	0	0	0	3	0	0	0
Total	0	0	0	0	4	11	2	0	0
Course	0	0	0	0	1	3	1	0	0

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

XES202 ENVIRONMENTAL STUDIES

Course Outcomes

CO1	C	Remember Understand	Describe the significance of natural resources and explain anthropogenic impacts.
CO2	C	Understand	<i>Illustrate</i> the significance of ecosystem, biodiversity and natural geo bio chemical cycles for maintaining ecological balance
CO3	C	Remember	<i>Identify</i> the facts, consequences, preventive measures of major
	A	Receive	pollutions and <i>recognize</i> the disaster phenomenon
CO4	C	Understand Analyse	<i>Explain</i> the socio-economic, policy dynamics and <i>practice</i> the control measures of global issues for sustainable development
CO5	C	Understand Apply	Recognize the impact of population and the concept of various welfare programs, and <i>apply</i> themodern technology towards environmental protection

COURSE CODE	COURSE NAME	L	Т	T P		C	
XES202 ENVIRONMENTAL STUDIES		2	0)	0	2	
C:P:A = 1.8:0:0.2							
		L	T	P	S	Н	
					S		
PREREQUISITE	Nil	2	0	0	1	3	

UNIT – I: INTRODUCTION TO ENVIRONMENTAL STUDIES AND ENERGY

Definition, scope and importance – Need for public awareness – Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, flood, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT - II: ECOSYSTEMS AND BIODIVERSITY

6

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT – III: ENVIRONMENTAL POLLUTION

6

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT -IV: SOCIAL ISSUES AND THE ENVIRONMENT

6

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT -V: HUMAN POPULATION AND THE ENVIRONMENT

6

Population growth, variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education - HIV / AIDS

- Women and Child welfare programme- Role of Information Technology in Environment and human health - Case studies.

LECTURE	TUTORIAL	TOTAL
30	0	30

TEXT BOOKS

- 1. Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co, USA, 2000.
- 2. Michael Begon,RobertW,Howarth,ColinR.Townsend," Essentials of Ecology", Wiley, 2014
- 3. Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.
- 4. Introduction to International disaster management, Butterworth Heinemann, 2006.

REFERENCE BOOKS

- 1. Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol.I and II, Enviro Media, India, 2009.
- 2. S.K.Dhameja, Environmental Engineering and Management, S.K.Kataria and Sons, New Delhi, 2012.
- 3. Sundar, Disaster Management, Sarup& Sons, New Delhi, 2007.
- 4. G.K.Ghosh, Disaster Management, A.P.H.Publishers, New Delhi, 2006.

E RESOURCES

- 1. http://www.e-booksdirectory.com/details.php?ebook=10526
- 2. https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook
- 6. http://www.e-booksdirectory.com/details.php?ebook=8557
- 7. http://www.e-booksdirectory.com/details.php?ebook=6804
- 8. http://bookboon.com/en/atmospheric-pollution-ebook
- 9. http://www.e-booksdirectory.com/details.php?ebook=3749
- 10. http://www.e-booksdirectory.com/details.php?ebook=2604
- 11. http://www.e-booksdirectory.com/details.php?ebook=2116
- 12. http://www.e-booksdirectory.com/details.php?ebook=1026
- 13. http://www.faadooengineers.com/threads/7894-Environmental-Science

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	0	0	3	0	0	3	2
CO2	0	0	1	0	0	2	0
CO3	0	0	3	0	0	3	2
CO4	0	0	3	0	0	3	2
CO5	2	0	2	1	0	3	3
Total	2	0	12	1	0	14	9
Course	1	0	3	1	0	3	2

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

XCA203 OBJECT ORIENTED PROGRAMMING WITH C++

Course Outcomes:

Cour	se Outcomes.		
CO1	Cognitive	Remember	Define basic concepts on object oriented
			programming
	Psychomotor	Apply	Apply structure and inline functions
CO2	Cognitive	Understand	Explain the types of inheritances and Applying
	Psychomotor	Apply	various levels of Inheritance for real time problems
			Apply the OOPs concepts class and object
CO3	Cognitive	Understand	<i>Explain</i> the operator Overloading functions
	Psychomotor	Apply	Apply various overloading methods for different
			applications
CO4	Cognitive	Understand	Describe and apply the Polymorphism concepts
	Affective	Apply	Apply and implement operator overloading functions
			Responding on design of dynamic memory allocation
CO5	Cognitive	Understand	Define and explain file concept and exception
			handlings in C++
			Apply and implement file operations

COURSE CODE	COURSE NAME	L	T	P	C
XCA203 OBJECT ORIENTED PROGRAMMING		4	0	1	5
	WITH C++				
C:P:A =3:1:1					
PREREQUISITE	C Programming	4	0	2	6
UNIT- I :INTROI	UNIT- I :INTRODUCTION TO C++				

key concepts of Object-Oriented Programming – Object Oriented Languages – I/O in C++ - C++ Declarations. Control Structures : - Decision Making and Statements : If, else ,jump, goto, break, continue, Switch case statements - Loops in C++ : For,While, Do - Functions in C++ - Inline functions – Function Overloading.

Lab:

- 1. Implement Various Control Structures.
- 2. Demonstrate Inline Functions
- 3. Implement Structure & Unions

UNIT- II: CLASSES AND OBJECTS

12+6

Declaring Objects – Defining Member Functions – Static Member variables and functions – array of objects –friend functions – Overloading member functions – classes – Constructor and destructor with static members.

Lab:

- 1. Implement Class and Subclass
- 2. Demonstrate Constructors & Destructors.
- 3. Programs to Implement Friend Function

UNIT- III: OPERATOR OVERLOADING AND INHERITANCE

12+6

Overloading unary, binary operators – Overloading Friend functions – type conversion – Inheritance: Types of Inheritance – Single, Multilevel, Multiple, Hierarchal, Hybrid, Multipath inheritance – Virtual base Classes – Abstract Classes.

Lab:

- 1. Implement Multilevel Inheritance
- 2. Implement Multiple Inheritance Access Specifiers
- 3. Implement Hierarchical inheritance Function Overriding /Virtual Function

UNIT-IV: POINTERS AND POLYMORPHISM

12+6

Declaration – Pointer to Class , Object – this pointer – Pointers to derived classes and Base classes – Arrays – Characteristics – array of classes – Memory models – new and delete operators – dynamic object – Binding , Polymorphism and Virtual Functions.

Lab:

1. Programs to Overload Unary & Binary Operators as Member Function & Non Member Function.

UNIT- V: FILES 12+6

File stream classes – file modes – Sequential Read / Write operations – Binary and ASCII Files – Random Access Operation – Templates – Exception Handling - String – Declaring and Initializing string objects – String Attributes – Miscellaneous functions . Lab:

1. Program to implement file operations

LECTUR	RE PRACTICAL	TUTORIAL	TOTAL
60	30	0	90

TEXT

1. Ashok N Kamthane , Object-Oriented Programming With ANSI and TURBOC C++, Pearson Education publication. 2003.

REFERENCES

1. E. Balagurusamy, OBJECT-ORIENTED PROGRAMMING WITH C++, Tata McGraw Hill Education Private Limited ,2011,fifthth edition

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	2	3	2	2	2	1	2	2	2
CO 5	3	2	2	2	2	1	2	2	2
Total	14	13	10	10	10	5	10	13	13
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA204 - DISCRETE MATHEMATICS

Course Outcomes:

CO1	C	Remember,	Define the properties and laws of sets, relations and functions.
	A	Respond to	Participate in the class discussion in the operation of set using venn
		phenomena	Diagram.
CO2	C	Understand	Explain the basic concepts of logic to calculate the normal forms,
			tautologies and contradiction.
CO3	C	Apply	Apply the counting principle permutation and combination and
			pigeonhole principle to <i>solve</i> the problem.
	P	Guided	Reproduce model related to counting principle
		Response	
CO4	C	Remember,	Explain the types of lattices and toshow lattices as partially ordered
		Understand	sets.
CO5	C	Understand	Explain the properties of semi groups and groups and any set with
			binary operation as a semigroup and group with examples.

•			

COURSE CODE	L	T	P	C		
XCA204	DISCRETE MATHE	4	1	0	5	
C:P:A =4.5:0.25:0.25						
			\mathbf{L}	T	P	Η
PREREQUISITE	Basic Mathematics		4	1	0	5
UNIT- I: SET OPERA	ATIONS					15
Set notations – Basic de	finitions and set operation	ıs – Venn diagı	am – Algebi	raic 1	aws of	f set
theory - D Morgan's	law. Relations: Properti	es of relation	s – Types	of re	elation	ıs –
Equivalence classes. F	unctions: Definition $\overline{}$ D	omain – Rang	ge and type	s of	funct	ion-
Classification of function	1.					
UNIT- II: NORMAL F	ORMS					15
Statements - Normal for	ms – CNF – DNF – PCNF	- PDN – Tauto	logies - Cont	radic	ctions.	<u>.</u>
UNIT – III: PERMUT	ATION AND COMBINA	TION				15
Counting principles – Th	ne Pigeonhole principle – (Counting – Perr	nutations and	l Cor	nbinat	ions
- Combinatorial argume	nts – Countable and uncou	ntable sets.				
UNIT- IV: LATTICES						15
Lattices as partially orde	red set – Types of lattices	– Lattices as al	gebraic syste	m.		•
UNIT- V: GROUPS						15
Binary operations – Sem	i groups - Groups – Exam	ples and elemer	ntary properti	les.		
		LECTURE	TUTORIA	т .		
		LECIUNE	IUIUNIA	L	TOTA	\ L

- 1. Ralph. P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introduction", Fourth Edition, Pearson Education Asia, Delhi, 2002.
- 2. Kenneth Levasseur and Alan Doerr, "Applied Discrete Structures, Department of Mathematical Sciences, University of Massachusetts Lowell, Version 2.0, 2013.

REFERENCES

- 1. Kenneth H.Rosen, "Discrete Mathematics and its Application", Fifth edition, Tata McGraw-Hill Publishing company pvt.Ltd., New Delhi,2003.
- 2. Kenneth H.Rosen, "Discrete Mathematics and its Applications: With Combinatorics

- and Graph Theory", Tata McGraw-Hill Education Pvt. Ltd, 2015.
- 3. Dr.M.K.Venkataraman, Dr.N.SridharanN.Chandrasekaran, "Discrete Mathematics", the National Publishing Company, 2003.
- 4. Veerajan T., Discrete Mathematics with Graph Theory and Combinatorics, 10th edition, Tata McGraw Hill, 2010.

E REFERENCES

- 1. Graph Theory A NPTEL Course, S.A. Choudum.
- 2. Graph Theory by Prof. L. Sunil Chandran, Computer Science and Automation Indian Institute of Science, Bangalore.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	0	0	0	1	0	1	0	0
CO 2	3	1	0	0	1	0	1	0	0
CO 3	3	1	0	1	1	0	1	0	0
CO 4	3	0	0	0	1	0	1	0	0
CO 5	3	1	0	0	1	0	1	0	0
Total	15	3	0	1	5	0	5	0	0
Course	3	1	0	1	1	0	1	0	0

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA205 COMPUTER NETWORKS

Course Outcomes:

CO1	C	Understand	Explain the OSI reference model used in the network
CO2	C	Understand	Describe the DLL services and different protocols.
	P	Perceive	Differentiate various networking commands and its functions
CO3	C	Knowledge	Compare the various routing algorithms.
	A	Receive	Describes the congestion control in the network layer
	P	Guided	Builds a program for the congestion control
		Response	
CO4	C	Understand	Demonstrate and Illustrate the transport layer and the
	A	Organize	congestion control algorithm.
	P	Adapt	Integrates different socket programming using TCP and UDP
			Adapts different RAW sockets for packet capturing and
			filtering
CO5	C	Understand	Summarize the application layer and the naming service.

COURSE CODE	COURSE NAME	L	T	P	С
XCA205	COMPUTER NETWORKS	3	1	0	4
C:P:A = 3:0.5:0.5					
		L	T	P	Н
PREREQUISITE	Nil	3	1	0	4

UNIT-I: OVERVIEW OF COMPUTER NETWORKS

12

Network hardware- Network software- Protocol Hierarchies – Layering – Interfaces, services, primitives – OSI reference Model – TCP/IP reference model – physical layer – transmission media - Wireless transmission – switching.

Lab:

- 1. Study of network commands in C.
- 2. Using TCP sockets and find the date time of a server and the client

UNIT – II : DATA LINK LAYER

12

Services of DLL – Framing – Flow control – Error control – Error detection codes – Error correction codes – DLL protocol – Stop and Wait protocol – Sliding Window Protocol - HDLC – DLL in the internet

Lab:

- 1. Simulate Stop-wait-Protocol
- 2. Simulate Sliding window protocol

UNIT-III: NETWORK LAYER

12

Services of Network Layer - Routing - Shortest Path Routing Algorithm - Congestion Control - General Principle of Congestion Control Inter Network Routing - Network Layer in the Internet - IP protocol -IP address - subnets - internet control protocol Lab:

- 1. Develop a program to connect the echo server & client using TCP sockets.
- 2. Develop a program to create a chat module using TCP sockets

UNIT- IV: TRANSPORTATION LAYER

12

Services of Transportation Layer – Addressing –Establishing and Releasing Connection – Flow Control – Buffering –Multiplexing – The Internet Transportation Protocol TCP and UDP Model – Connection Management – TCP Congestion Control.

Lab:

- 1. Develop a program for resolving the DNS server using UDP sockets
- 2. Implement domain naming server using sockets.
- 3. Implement the packet capturing and filtering procedure using raw socket

UNIT- V: APPLICATION LAYER

12

DNS - Name Space -Resource - Records - Name Servers - Email - Architecture and Services - User Agent - Message Format and Transfer - USENET Implementation - WWW Client and Server Sides - Locating Information on the Web

Lab:

- 1. Develop a program for remote procedure call.
- 2. Simulate the Address resolution protocol using UDP.
- 3. Simulate a program study the performance of TCP

LECTURE	TUTORIAL	PRACTICALS	TOTAL
45	15	0	60

TEXT

- 1. Andrew Tanenbaum, Computer Networks, PHI, 3rd Edition.
- 2. Larry Peterson and Bruce Davie, Computer Networks: A Systems Approach, 4th Ed. 2007.

REFERENCES

1. William Stalling, Computer networks – PHI

E REFERENCES

- http://nptel.ac.in/courses/106105081/
 Computer Network Topology, Prof.Sujoy

Gosh,http://nptel.ac.in/video.php?subjectId=10610 5081

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	1	3	2
CO 2	3	3	2	2	2	1	1	3	2
CO 3	3	3	2	2	2	1	1	3	2
CO 4	3	2	2	2	2	1	1	3	2
CO 5	2	2	2	2	2	1	1	3	2
Total	14	13	10	10	10	5	5	15	10
Course	3	3	2	2	2	1	1	3	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA206 DATA STRUCTURES AND ALGORITHMS

Course Outcomes:

CO1	C	Understand	<i>Illustrate</i> the classification of data types and operations of stack.
	P	Guided Response	Build a program to implement the operations of stack.
	A	Receive	Chooses various applications that function as stack.
CO2	C	Understand	Explain the functions of queue and its types
	P	GuidedResponse	Build a program to implement the operations of queue.
	A	Respond	Selects the real word applications in queue
CO3	C	Understand	Describe the operations of linked list and its advantages
	P	Guided Response	Build an application to demonstrate the functions of linked
			list
	A	Respond	Practices the linked list concept in real time applications
CO4	C	Knowledge	Recall the recursion function in various problems.
	A	Respond	Writes the recursion program for various problems in C
CO5	C	Understand	Describe the concepts of tree and sorting
	P	Guided Response	Build an application in C for traversing a tree and sorting
			concept
	A	Receive	Gives the importance of tree traversing and sorting
p			techniques.

COURSE CODE	COURSE NAME	L	Т	P	C
XCA206	DATA STRUCTURES ANDALGORITHMS	4	0	1	5
C:P:A = 3.8:1:0.2					
		L	T	P	H

PREREQUISITE C Programming 4 0 2 6

UNIT- I:INTRODUCTION TO DATA STRUCTURES AND STACK

12+6

Definition, Classification of data structures: primitives and non primitive, Operations on data structures – Definition, Array & Linked list representation of stack, Operations on stack, Applications of stacks, Infix, Prefix and Postfix notations – Conversion of an arithmetic expression from infix to postfix.

Lab:

1. Create a Stack and do the following operations using array

(i)Push (ii) Pop (iii) Peep

UNIT -II: QUEUE

12+6

Definition, Array & Linked list representation of queue – Types of Queues: Simple queue, Circular queue, Double ended queue, Priority queue, Operations on all types of queues. Lab:

1. Create a Queue and do the following operations using array(i)Add (ii) Remove

UNIT-III: LINKED LIST

12+6

Definition, Components of linked list, Representation of linked list, Advantages and Disadvantages of linked list. Types of linked list: Singly linked list, doubly linked list, Circular linked list and Circularly doubly linked list. Operations on singly linked list: creation, insertion, deletion, search and display.

Lab:

1. Implement the operations on singly linked list.

UNIT-IV: RECURSION

12+6

Definition, Recursion in C, writing recursive programs – Binomial coefficient, Fibonacci, GCD, Factorial etc.

UNIT- V: TREE AND SORTING TECHNIQUES

12+6

Tree, Binary Tree, Complete Binary Tree, Binary Search Tree, Heap Tree Terminology: Root, Node, Degree of a Node And Tree, Terminal Nodes, Non-Terminal Nodes, Siblings, Level, Edge, Path, Depth, Parent Node, Ancestors of a Node. Different Types of Searching Techniques: Bubble Sort, Selection Sort, Merge Sort, Insertion – Quick Sort. Lab:

- 1. Implement the following operations on a binary search tree.
- (i) Insert a node (ii) Delete a node
 - 2. Create a binary search tree and do the following traversals
- (i)In-order (ii) Pre order (iii) Post order
 - 3. Sort the given list of numbers using insertion sort
 - 4. Sort the given list of numbers using quick sort.
 - 5. Perform the following operations in a given graph

(i) Depth first search (ii) Breadth first search

LECTURE	TUTORIAL	PRACTICALS	TOTAL
60	0	30	90

TEXT

- 1. A.K. Sharma, "Data Structures using C", Pearson Education, 2013
- 2. Robert L. Kruse"Data Structures and Program Design in C, Pearson Education, 2013

REFERENCES

- 1. Robert L Kruse: Data Structures and program designing using C, 2013.
- 2. Kamthane: Introduction to Data Structures in C, Pearson Education, 2005

E REFERENCES

- 1. NPTEL, Data structures and algorithm ,Prof. Hema A Murthy,IITMadras,Prof. Shankar Balachandran,IITMadras,Dr. N S. Narayanaswamy,IIT Madras
- 2. NPTEL, Data structures and algorithm ,Prof. Naveen Garg,IIT Delhi

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	3	3	2	2	2	1	2	3	2
CO 5	3	2	2	2	2	1	2	3	2
Total	15	13	10	10	10	5	10	15	13
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA301 HTML AND DHTML

Course Outcomes:

CO1	C	Remembering	List out the tags of Text Formatting and Tables
	P	Set	Starts to work with Text Formatting tags
	A	Responding	Performs data organization in List and tables with variety of samples
CO2	C	Understanding	Demonstrate the List, Links and Images.
	P	Guided Response	Builds the web site with List, Links and Images.
	A	Responding	Selects the necessary tag used for designing the website.
CO3	C	Apply	Explain Frames in HTML for developing the webpage
	P	Guided Response	Assembles all the web sites linked with Frames
CO4	C	Understanding	Explain and Develop static web page with HTML form
	A	Guided Response	elements Compiles the form element in a web document
CO5	C	Understanding	Compiles the form element in a web document. Explain DHTML with Java script and CSS
CO3		Č	•
	P	Guided Response	Practices with CSS, Java Script and DHTML
	Α	Responding	Organizes the Dynamic web pages with static webpages

COURSE CODE	COURSE NAME	L	T	P	С
XCA301	HTML AND DHTML	1	0	1	2
C:P:A =					
1:0.5:0.5					
		L	Т	P	Н
PREREQUISITE	Nil	1	0	2	3
UNIT- I:INTROD	UCTION TO HTML		•	15	-

Designing a Home Page – HTML Document –Anchor Tag – Hyperlinks – Head and Body Sections – Header Section – Title – Prologue – Links – Colorful Pages – Comments – Body Section – Heading – Horizontal Ruler – Paragraph – Tabs – Images and Pictures – Lists and their Types – Nested Lists– Table Handling.

Lab.

- 1. Design a webpage using HTML Text formatting and List tags.
- 2. Design a webpage using HTML Tables and images.
- 3. Create a document with links which connects an external document.
- 4. Design a web page using images and Media types

UNIT-II: FRAMES AND FORMS

15

Frames: Frameset Definition – Frame Definition – Nested Framesets – HTML and other Media types - Forms: Forms and their Elements.

Lab:

- 1. Create an E-Learning document using Frames.
- 2. Design a Login Web page using HTML Forms.

UNIT – III: DHTML

15

Document Object Model – HTML and Scripting Access – Rollover Buttons – Moving objects with DHTML – Ramifications of DHTML – Introduction to java script – Fundamentals of CSS.

Lab:

- 1. Design a web page using DHTML filter concept.
- 2. Create a web page to perform the addition of two numbers using java script.
- 3. Design a web page with CSS.

LECTURE	PRACTICA	TOTAL
	L	
15	30	45

TEXT

- 1. Thomas A.Powell, "HTML: The complete Reference", Tata McGraw Hill Publications Second Edition, 1999.
- 2. Robert W.Sebesta, "Programming the World Wide Web", Pearson Education, Third Edition, 2007.
- 3. C.Xavier, "World Wide Web Designing", Tata McGraw Hill, 2000.

REFERENCES

- 1. Wendy Willard, "Web Design-Beginners Guide" Tata McGrawHill, 2001.
- 2. Ivan Bayross, "Web Enabled Commercial Application Development using HTML, JavaScript, DHTML and PHP", Fourth Edition, BPB Publications, New Delhi, 2010.

E REFERENCES

- 1. https://www.w3.org/
- 2. http://www.w3schools.com/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	2	3	2	2	2	1	2	2	3
CO 5	3	2	2	2	2	1	2	2	3

Total	14	13	10	10	10	5	10	13	15
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA302 DATABASE MANAGEMENT SYSTEMS

Course Outcomes:

CO1 C Knowledge **Describe** the database architecture and its applications **Sketch** the ER diagram for real world applications Apply Uses various ER diagram for a similar concepts from various A Receive sources CO2 C Understand *Discuss* about the relational algebra and calculus Construct various queries in SQL and PL/SQL P Guided Response Compiles various queries in SQL, Relational Calculus and A Respond Algebra **Describe** the various normalization forms CO3 C Knowledge Apply the normalization concepts for a table of data **Apply Practices** a table and implement the normalization concepts A Receive CO₄ C Understand Explain the storage and accessing of data. CO₅ C Understand *Illustrate* the query processing in database management. Define the concurrency control and deadlock concept Knowledge

COURSE CODE	COURSE NAME	L	T	P	C
XCA302	DATABASE MANAGEMENT SYSTEMS	4	0	1	5
C:P:A = 3: 1.75: 0.25					
		L	Т	P	Н
PREREQUISITE	Nil	4	0	2	6
UNIT-I: DATABASI	E ARCHITECTURE AND ER DIAGRAM			***************************************	18

Database system applications - Purpose of database systems - View of data- Database languages - Database architecture - Database users and administrators - History of database systems-Entity relationship modeling: entity types, entity set, attribute and key, relationships, relation types, roles and structural constraints, weak entities, enhanced E-R and object modeling, sub classes; super classes, inheritance, specialization and generalization

UNIT- II: RELATIONAL DATA MODEL

18

Relational model concepts, Relational constraints, Relational Languages: Relational Algebra, The Tuple Relational Calculus - The Domain Relational Calculus - SQL: Basic Structure-Set Operations- Aggregate Functions-Null Value-Nested Sub Queries-Views Complex Queries-Modification Of Database-Joined Relations-DDL-Embedded SQL-Dynamic SQL-Other SQL Functions- -Integrity and Security.

Lab:

- 1. Execute a single line query and group functions.
- 2. Execute DDL Commands.
- 3. Execute DML Commands
- 4. Execute DCL and TCL Commands.

- 5. Implement the Nested Queries.
- 6. Implement Join operations in SQL
- 7. Create views for a particular table
- 8. Implement Locks for a particular table.
- 9. Write PL/SQL procedure for an application using exception handling.
- 10. Write PL/SQL procedure for an application using cursors.
- 11. Write a PL/SQL procedure for an application using functions
- 12. Write a PL/SQL procedure for an application using package

UNIT – III: DATA NORMALIZATION

18

Pitfalls in relational database design — Decomposition — Functional dependencies — Normalization — First normal form — Second normal form — Third normal form — Boyce-codd normal form — Fourth normal form — Fifth normal form

UNIT- IV: STORAGE AND FILE ORGANIZATION

18

Disks - RAID -Tertiary storage - Storage Access -File Organization - organization of files - Data Dictionary storage

UNIT- V: QUERY PROCESSING AND TRANSACTION MANAGEMENT

18

Query Processing - Transaction Concept - Concurrency Control -Locks based protocol-Deadlock Handling -Recovery Systems

***************************************	LECTURE	TUTORIAL	PRACTICALS	$T \cap T \wedge I$
	LECTORE	TUTURIAL	INACITCALS	IOIAL
	60	0	30	90

TEXT

- 1. Abraham Silberschatz, Henry Korth, S.Sudarshan, Database Systems Concepts, Sixth Edition, McGraw Hill, 2010.
- 2. Raghu Ramakrishnan and Johannes Gehrke, Database management systems, Third Edition.2002

REFERENCES

- 1. Bipin Desai, An Introduction to database systems, Galgotia Publications, 2010.
- 2. RamezElamassri, Shankant B-Navathe, Fundamentals of Database Systems, Pearson, 7th Edition, 2015

E REFERENCES

- 1. NPTEL, Introduction to database desigh, Dr P Sreenivasa Kumar Professor CS&E, Department, IIT, Madras
- 2. NPTEL, *Indexing and Searching TechniquesinDatabases*Dr. Arnab Bhattacharya,IIT Kanpur

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO 9
								8	
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	3	3	2	2	2	1	2	3	3
CO 5	3	2	2	2	2	1	2	3	3
Total	15	13	10	10	10	5	10	15	15
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

XCA 303 VISUAL PROGRAMMING

\sim	A 4
('Allrea	Outcomes:

Apply

CO1	C	Knowledge	Understand basic controls and events
CO2	C	Understand,	Recognize Various controls for different applications
	P	Apply	
CO3	C	Understand,	Describe and applyintrinsic and extrinsic controlsin
	P	Apply	programming
CO4	C	Understand,	Understand and implement connections and operations in
		Apply	database
CO5	\boldsymbol{C}	Understand	Understand and Implement various VC++ controls & events

COURSE CODE	COURSE NAME	L	T	P	C	
XCA 303	VISUAL PROGRAMMING	4	0	1	5	
C:P:A = 3:2:0						
		L	T	P	Η	
PREREQUISITE	C++ concepts	4	0	2	6	
UNIT- I :INTRODUCTION ON WINDOWS PROGRAMMING 1						

UNIT- I:INTRODUCTION ON WINDOWS PROGRAMMING

Overview of Windows Programming - Event driven programming - GUI concepts - Data Types – Resources – Windows Messages - Basic Drawings: GDI – Device Context – Dots and Lines - creating the window - displaying the window - Text Output - Scroll Bars - Keyboard Mouse – Menus - Software Development Kit (SDK) Tools.

UNIT- II: VISUAL BASIC PROGRAMMING

18

Introduction – Forms – Variables, Types – Properties, methods, events – Decision Making – Looping - Select Case - Modules - Arrays - Built-in functions - Procedures - Functions-Tool Box Controls – Responding to mouse events – Drag and drop events Responding to keyboard events – KEYPRESS, KEYUP, KEYDOWN events - shape and line control.

Lab:

- 1. Design a form and event handler for keyboard & mouse events
- 2. Visual Basic code to calculate simple and compound interest
- 3. Design a scientific calculator using control array
- 4. Design a form in visual basic for free hand writing

UNIT- III: ADVANCED CONTROLS

18

Menu bar - Tool bar - Message box - Input box - Dialog box - MDI - Tree view - List view Tab strib - File System Controls: File List Box - Directory List Box - Drive List Box -File System Objects - Projects with Multiple Forms - Do Events and Sub Main - Error Trapping.

Lab:

- 1. Design a simple MDI Text Editor in visual Basic
- 2. Designa Digital Clock in Visual Basic
- 3. Write a visual basic code for creating simple applications with file system controls

UNIT- IV: ODBC AND DATABASE ENGINES

Database Manager – Data Control – Record set Objects – DAO – Manipulation of records – Database Management with ODBC - RDO -ADO - ADO Control - Data Grid Control -Database Applications.

Lab:

1. Create, Update and Manipulate a content in Database

UNIT- V: VISUAL C++

VC++ Components – MFC - Resources – Getting started with AppWizard – Class Wizard -

Main Window Object – Device Context - Event Handling: Handling Mouse – Graphics Device Interface - Pen, Brush, Colors, Fonts - Modal and Modeless Dialogs – Document View Architecture – Serialization – Connecting to database using VC++. Lab:

- 1. Create a code for drawing various two dimensional objects
- 2. Create VC++ code to manipulate Mouse Interface
- 3. Design a code to manipulate Menu bar and Tool bar applications
- 4. Design a code for displaying Message Box
- 5. Design VC++ code for Document View Architecture
- 6. Create SDI & MDI applications, Modal and Modeless dialog.
- 7. Design VC++ code for manipulating DLLs
- 8. Design a code in VC++ to access data through ODBC

LECTURE	TUTORIAL	PRACTICA	TOTA
		\mathbf{L}	L
60	0	30	90

TEXT

- 1. Charles Petzold, "Programming Windows", 6th Edition, 2012, Microsoft Press
- 2. David I. Schneider," Introduction to Programming Using Visual Basic", University of Maryland, Pearson, 10th Edition, 2017

REFERENCES

- 1. David I. Schneider, Introduction to Programming with Visual Basic 6.0, 4th Edition, 2003, Prentice Hall
- 2. Avanija J, Visual Programming, 3rd Edition, 2009, Anuradha Publications.

E REFERENCES

- 1. NPTEL, Dr.S.Arunkumar, Department of Computer Science and Engineering, IIT Delhi
- 2. Microsoft Visual C++: Make a Windows Forms Application by Alexanderrockandroll

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	3	2	2	2	1	2	3	3
CO 4	3	3	2	2	2	1	2	3	3
CO 5	3	3	2	2	2	1	2	3	3
Total	15	15	10	10	10	5	10	15	15
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

XCA304 STATISTICAL AND NUMERICAL METHODS

Course Outcomes:

CO1 C Remember *Explain*the statistical data in the form of table, diagram and Understand graphand to *find* various statistics, correlation, rank correlation and regression coefficients.

CO2	C	Remember Apply	Define null and alternate hypothesis and to Apply test statistic.
CO3	C	11 *	Define discrete and continuous random variables and to Find the expected values and moment generating functions of discrete and continuous distributions.
CO4	C	Understand Apply	<i>Explain</i> computational numerical methods to <i>Solve</i> algebraic and transcendental equations and systems of linear equations.
CO5	C	Apply	Solve the Numerical Differentiation and Integration and to Apply the Trapezoidal and Simpson's rules.

COURSE CODE	COURSE NAME	L	Т	P	C			
XCA304 STATISTICALAND NUMERICAL METHODS		3	2	0	5			
C:P:A = 5:0:0		L	Т	P	Н			
PREREQUISITE Basic Mathematics			2	0	5			
UNIT-1: MEASURES OF CENTRAL TENDENCY 15								
	graphical representation of data. Mean Media . Karl Pearson's Coefficient of Correlat							

Regression – Regression coefficients, Regression Equations.

UNIT- II: TESTING OF HYPOTHESIS

15

Sampling distributions - Tests for single mean, proportion, Difference of means (large and small samples) – Tests for single variance and equality of variances – χ 2-test for goodness of fit – Independence of attributes.

UNIT- III: PROBABILITY DISTRIBUTIONS

15

Sample space - Events - Definition of probability - conditional probability and independent events- Random variables, distributions and Mathematical expectations. Discrete distributions - Binomial - Poisson. Continuous distribution - Normal.

UNIT- IV: NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

15

Numerical solution of Algebraic & Transcendental Equations - Bisection method - Newton Raphson method. Numerical solution of Simultaneous Linear Algebraic Equation - Gauss Elimination method - Gauss Jordon Elimination method - Gauss Seidel method and Gauss - Jacobi method.

UNIT- V: NUMERICAL DIFFERENTIATION AND INTEGRATION

15

Numerical Differentiation - Newton's Forward difference formula and backward difference formula. Numerical Integration - Trapezoidal rule - Simpson's One-third rule - Simpson's three - eighth rule.

LECTURE	TUTORIAL	TOTAL
45	30	75

TEXT BOOKS

- 1. S. C. Gupta, V. K. Kapoor, "Fundamental of Mathematical Statistics" ,Sultan Chand & Sons ,Eleventh Edition, 2014
- 2. P. Kandasamy, K. Thilagavathi, K. Gunavathi, Numerical Methods, S. Chand & company Ltd. New Delhi Revised Edition, 2005.

REFERENCES

- 1. V. Rajaraman, Computer oriented numerical methods, PHI Publication, 2013.
- 2. E. Balagurusamy, Numerical methods ,copyright 1999 by Tata MC Graw Hill,25th Reprint, 2008

E REFERENCES

1. Elementary Numerical Analysis, Prof. Rekha P. Kulkarni. Department of Mathematics,

Indian Institute of Technology, Bombay.

2. Advanced Engineering Mathematics, Prof. Somesh Kumar, Department of Mathematics, Indian Institute of Technology, Kharagpur.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO2
								1	
CO 1	3	1	0	0	1	0	1	0	0
CO 2	3	1	0	0	1	0	1	0	0
CO 3	3	1	0	0	1	0	1	0	0
CO 4	3	1	0	0	1	0	1	0	0
CO 5	3	1	0	0	1	0	1	0	0
Total	15	5	0	0	5	0	5	0	0
Course	3	1	0	0	1	0	1	0	0

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA401 DATA ANALYTICS

Course Outcomes:

CO1	C	Understanding	Demonstrate Data Management in Worksheet
	P	Guided Response	Organises the data in worksheet
	A	Responding	Performs data organization in worksheet with variety of samples
CO2	C	Understanding	Interpret Formulas in an Excel Spread sheet
	A	Responding	Selects formulas for calculating the data in a spread sheet
CO3	C	Apply	Apply Statistical and Mathematical functions for given
	P	Guided Response	samples
			<i>Manipulate</i> the data with statistical and Mathematical functions
CO4	C	Apply	Apply the type of charts to analyse the data
	P	Guided Response	Displays the chart for any real time data
CO5	C	Understanding	Explain Analysis Toolpak for statistical concepts
	P	Set	Starts to work with Analysis Toolpak
	A	Responding	Practices Analysis Toolpak with different samples

COURSE CODE	COURSE NAME	L	T	P	C				
XCA401	DATA ANALYTICS	1	0	1	2				
C:P:A = 1:0.5:0.5									
		L	T	P	Н				
PREREQUISITE	Nil	1	0	2	3				
UNIT -I :INTRODUCTION TO WORKSHEET									

Getting Started with Excel: Excel and Spread Sheets – Excel Workbooks and Worksheets – Worksheet Cells - Excel Add-Ins – Working with Data: Data Entry – Formulas and Functions – Querying Data – Importing Data from Databases.

Lab:

- 1. Create a table to perform statistical and mathematical functions.
- 2. Create a spreadsheet to sort data and print portions of a worksheet.
- 3. Import and Export the data from the database and files.

UNIT- II: DATA ANALYSIS IN CHARTS

15

Working with Charts: Excel Charts – Scatter Plots – Editing a chart – Identifying Data Points: Creating Bubble Plots – Breaking a scatter plot into categories – Plotting Several Variable.

Lab:

- 1. Create a spreadsheet to perform "What if?" calculations.
- 2. Demonstrates the ease of creating charts.
- 3. Draw a Histogram Diagram in MS-Excel using student data set.

UNIT-III: STATISTICAL ANALYSIS

15

Describe Data: Variables and Descriptive Statistics - Frequency Tables:

Creating a Frequency Table – Using Bins in a Frequency Table – Working with Histograms – Distribution Statistics – Percentiles and Quartiles – Measures of the Center: Means, Medians and the Mode – Measures of Variability – Working with Boxplots.

Lab:

- 1. Perform Regression analysis with given dataset.
- 2. Perform correlation analysis with given data.
- **3.** Create pivot table and carry out the analysis with charts.

	PRACTICA	TOTAL
	L	
15	30	45

TEXT

- 1. Kenneth N.Berk& Patrick Carey, "Data Analysis with Microsoft Excel", 3rdEdition.
- 2. John Walkenbach, "Microsoft Office Excel 2007", Wiley Publishing Inc., 2007.

REFERENCES

- 1. Curtis Frye, "Step by Step Microsoft Office Excel 2007", First Edition, Microsoft Press.
- 2. Marg, Craig Stinson, "Microsoft Office Excel 2007 inside and outside", First Edition, Microsoft Press.

E REFERENCES

1.NPTEL, Dr.NandanSudarsanam, Dr.BalaramanRavindran, IIT, "Introduction to Data Analytics".

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3

CO 3	3	2	2	2	2	1	2	3	3
CO 4	3	3	2	2	2	1	2	2	2
CO 5	3	2	2	2	2	1	2	2	2
Total	15	13	10	10	10	5	10	13	13
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA402- JAVA PROGRAMMING

Course Outcomes:

CO1 CO2		Knowledge Understand Apply	Explain the history and features of java Describe and implement the class, packages and interfaces Participating in greating packages and interfaces for						
	A	Response	Participating in creating packages and interfaces for applications domain.						
CO3	C	Understand Apply	Describe and implement the inheritance concepts						
	P	Set	Implement various level of inheritance for given applications						
CO4	C	Understand Apply	Describe and implement various types of exception and its handling methods						
	P	GR	Build a program to implement exception handling concepts						
CO5	C	Apply	<i>illustrate</i> the Applets methods in Graphics, AWT controls and event handling						
	P	GR	Build an application using event handling method						

COURSE CODE	COURSE NAME	L	Т	P	C	
XCA402	JAVA PROGRAMMING	4	0	1	5	
C:P:A = 3:1.5:0.5						
		L	Т	P	Н	
PREREQUISITE	C++ Programming	4	0	2	6	
UNIT- I: INTRODUCTION						

Introduction to Java-Java and Internet-Byte codes-Features of Java-Java Development Environment- Java History -Java Development Kit (JDK)-Java Tokens-Java Character setdata types-operators-expressions-Java Statements-control statements-Simple programs- Array and Vectors-Strings and StringBuffers.

Lab

- 1.Program to implement simple programs based on operators, Loop and decision making statements.
- 2.Program to implement array

UNIT- II: CLASSES, INTERFACES AND PACKAGES

18

Classes-Objects-Wrapper Classes-Packages and Interfaces-extending interfaces-implementing interfaces-abstract methods.

Lab

- 1. Program to implement a class and instantiate its object.
- 2.Program to demonstrate the use of interfaces.

3. Program to implement user-defined and pre-defined packages.

UNIT- III: INHERITANCE

18

Inheritance Extending classes-overriding methods-finalize methods-Abstract and Final classes-Interfaces and Inheritance.

Lah

- 1.Program to implement constructor and overloading concepts
- 2.Program to implement wrapper classes.
- 3.Program to implement string class and string buffer class.
- 4. Program to implement single level and multi level inheritance.

UNIT-IV: EXCEPTION HANDLING

18

Error Handling and Exception Handling-Exception Types and Hierarchy-Try Catch blocks-Use of Throw, Throws and Finally- Programmer Defined Exceptions.

Lab

1.Program to implement exception handling.

UNIT- V: APPLETS, GRAPHICS AND FILES

18

Fundamentals of Applets-Graphics. AWT and Event Handling: AWT components and Event Handlers-AWT Controls and Event Handling Types and Examples-Swing- Introduction. Input and Output: Files – Streams. Multithreading.

Lab

1.Program to implement a simple applet.

2.Program to implement an applet using graphics class.

LECTURE	TUTORIAL	PRACTIC	TOTAL
		\mathbf{AL}	
60		30	90

TEXT

1.E. Balagurusamy ,"Programming With Java ",Tata Mcgraw Hill Education Private Limited,4th Edition, 2009

2. Y. Daniel Liang,"Introuction to java programming",PearsonPublication,Tenth Edition,2013

REFERENCES

- 1. Deitel H M and Deitel P J, "JAVA-How to Program", Prentice Hall of India Private Limited, New Delhi, 2008.
- 2. D.Jana, Java and Object oriented Programming Paradigm, PHI, New Delhi, 2005.

E REFERENCES

- 1. http://www.nptelvideos.com/java/java video lectures tutorials.php
- 2. http://www.nptelvideos.com/java/java_video_lectures_tutorials.php
- 3. http://freevideolectures.com/Course/2513/Java-Programming.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	3	3	3	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	3	2	2	2	1	2	3	3
CO 4	3	3	2	2	2	1	2	2	3
CO 5	3	3	2	2	2	1	2	2	3

Total	15	15	11	11	11	5	10	13	15
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA 403 RESOURCE MANAGEMENT TECHNIQUES

Course Outcomes:

CO1	C	Understanding Apply	<i>Explain</i> the basic concepts of optimization and to formulate and <i>Solve</i> Linear Programming problems.
CO2	C	Understanding Apply	<i>Explain</i> and <i>Apply</i> the concepts of Transportation problem and Assignment problem.
CO3	C	Understanding Apply	Explain and Apply the concepts of sequencing problem
CO4	C	Apply	<i>Explain</i> and <i>Demonstrate</i> the basic concepts of PERT-CPM and their applications in product planning control.
CO5	C	Understanding Apply	Solve the Minimal Spanning Tree Problem, Shortest Route Problem, Maximal Flow Problem and Minimal Cost Capacitated Flow Problem.

COURSE CODE	COURSE	ENAME	L	T	P	С			
XCA403	RESOURCE MANAG	EMENT	3	2	0	5			
	TECHNIQUES								
C:P:A = 5:0:0	-								
			${f L}$	Т	P	Н			
PREREQUISITE	Basic Mathematics		3	2	0	5			
UNIT- I: LINE	AR MODELS					15			
Basics of OR & D	Decision making - Role	of computers i	n OR, Linear	Prog	gramn	ning			
Problem – Formula	tion, Graphical solution of	of two variable	s Canonical &	stan	dard f	orm			
of LPP, Simplex m	nethod, Charne's method	of penalties.							
UNIT- II: TRANS	PORTATION AND AS	SIGNMENT I	PROBLEMS			15			
Transportation algo	orithm - Degeneracy algor	rithm- Unbalan	ced Transporta	ition	probl	em-			
Unbalanced assignment	nent algorithm.								
UNIT – III: SEQU	ENCING PROBLEM					15			
Processing of n j	obs through two machi	nes -Processin	ig of n jobs	throu	ugh t	hree			
machines- Processi	ng of n jobs through m m	achines.							
UNIT- IV: PERT	& CPM					15			
Network - Fulke	rson's rule- Measure	of activity-	PERT compu	ıtatio	n- C	PM			
computation.									
UNIT -V: NETW	ORK MODELS					15			
Network definition	- Minimal spanning tree	problem- Shor	test route prob	lem-	Maxi	imal			
flow problem- Min	imal cost capacitated flow	v problem.							
		LECTURE	TUTORIAL	r	TOT	\L			
	45 30 75								
TEXT									
1. Hamdy A. Ta	aha, Operations Resea	1 A T	1	1 .1		ion,			

PearsonEducation, Inc., 2008

2. Kantiswaroop, Gupta P.K and Manmohan, Operations Research, Sultan Chand & Sons, New Delhi, 2008

REFERENCES

- 1. Prem Kumar Gupta and D.S. Hira, Operations Research, S. Chand and Co., Ltd. New Delhi, 2008.
- 2. Gupta R. K., Linear Programming, Krishna Prakashan Media (P) Ltd., 2009.

E REFERENCES

1. Lecture Series on Fundamentals of Operations Research by Prof.G.Srinivasan, Department of Management Studies, IIT Madras. For more details on NPTEL visit http://nptel.iitm.ac.in

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	1	0	0	1	0	1	0	0
CO 2	3	1	0	0	1	0	1	0	0
CO 3	3	1	0	0	1	0	1	0	0
CO 4	3	1	0	0	1	0	1	0	0
CO 5	3	1	0	0	1	0	1	0	0
Total	15	5	0	0	5	0	5	0	0
Course	3	1	0	0	1	0	1	0	0

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA404 OPERATING SYSTEMS

Course Outcomes:

		Understanding Understanding	Explain the operating system functionsImplement the process and various process scheduling
	P	Adapt	algorithms
			Executes the different types of scheduling algorithms
CO3	C	Knowledge	Outline process cooperation and inter process communication
	A	Receive	Recognize the principles of concurrency
	P	Guided	Builds a program model for deadlock prevention and
		Response	avoidance
CO4	C	Understanding	Describe various memory management concepts
	A	Organize	Integrates different memory management techniques
	P	Adapt	Apply the fixed size and variable size page replacement
		-	algorithm
CO5	C	Understanding	Implement and understand the file organization

COURSE CODE	COURSE NAME	L	T	P	C
XCA404	OPERATING SYSTEMS	4	0	1	5

C:P:A = 3:1.5:0					
		L	T	P	Н
PREREQUISITE	C++ concepts, Windows Programming	4	0	2	6
UNIT I OVERVIEW	OF OPERATING SYSTEMS	-			18

Functionalities and objectives of operating Systems- processor register- instruction execution- interrupts- types of interrupts.

UNIT IIPROCESS MANAGEMENT

18

Process concepts: process states- process control block- process and threads- processor scheduling- scheduling algorithms.

Lab:

- 1. Simulate the FCFS CPU Scheduling Algorithms.
- 2. Simulate the SJF CPU Scheduling Algorithms.
- 3. Simulate the Priority CPU Scheduling Algorithms.
- 4. Simulate the Round Robin CPU Scheduling Algorithms

UNIT IIIPRINCIPLES OF CONCURRENCY

18

Critical Sections - Mutual Exclusion - Process Cooperation- Inter Process Communication-Deadlock Prevention- Detection- Avoidance- Semaphores- Monitors-Message Passing.

Lab:

- 1. Simulate MVT and MFT
- 2. Simulate Bankers algorithm for Deadlock Avoidance
- 3. Simulate Bankers Algorithm for deadlock Prevention

UNIT IVMEMORY MANAGEMENT

18

Virtual Memory Concepts- Paging and Segmentation- Address Mapping- Virtual Storage Management- Page Replacement Strategies.

Lab:

- 1. Simulate FIFO Page Replacement Algorithms
- 2. Simulate LRU Page Replacement Algorithms
- 3. Simulate Optimal Page Replacement Algorithms
- 4. Simulate Paging Technique of Memory Management

UNIT V FILE ORGANIZATION

18

Blocking and buffering, file descriptor- file and directory structures- I/O devices- disk scheduling.

 LECTUR	TUTORIA	PRACTICAL	TOTA
E	L	S	L
60	-	30	90

TEXT

- 1. William Stallings, Operating Systems, Prentice Hall of India (P) Ltd, 7th edition-2012.
- 2. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, Sixth edition. Addison-Wesley (2003).

REFERENCES

- 1. Andrew Tanenbaum, "Modern Operating Systems", Pearson, 2008.
- 2. Silberschatz and P. B. Galvin, "Operating System Concepts", 7th Edition, Addison Wesley Publication.

E REFERENCES

- 1. http://www.nptel.ac.in/courses/106108101/
- 2. http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Operating%20Systems/New_index1.html
- 3. http://www.nptel.ac.in/downloads/106108101/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO
									2
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	2	3	2	2	2	1	2	2	2
CO 5	3	2	2	2	2	1	2	2	2
Total	14	13	10	10	10	5	10	13	13
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

XCA501 XML AND WEB SERVICES

Course Outcomes:

CO1	C	Understanding	Explain the concepts of XML				
	P	Set	Starts to work with XML tags				
CO2	C	Understanding	ng Demonstrate the XML schema and DTD				
	P	Guided Response	Builds the middleware with XML schema and DTD				
CO3	C	Understanding	Explain the XML presentation and Transformation				
	P	Guided Response	technique				
			Assembles all the CSS tags to represent the XML data				
CO4	C	Understanding	Outline the Web Services Building Block				
CO5	C	Understanding Adapt the XML concepts to work with Webservices					
	P	Guided Response	rganizes the webservices with XML tags				
	A	Responding	Uses the XML concepts to perform the Webservices				

COURSE CODE	COURSE NAME	L	Т	P	C	
XCA501	XML AND WEB SERVICES	1	0	1	2	
C:P:A = 1:0.5:0.5						
		L	Т	P	Н	
PREREQUISITE	HTML Concepts	1	0	2	3	
UNIT- I: FUNDAMENTALS OF XML						

Role of XML - XML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture (SOA).

Lab:

- 1. Create a XML document to store an address book.
- 2. Create a XML document to store information about books and create the Internal DTD files.

XML - Name Spaces - Structuring With Schemas and DTD - Presentation Techniques - Transformation - XML Infrastructure.

Lab:

- 1. Create a XML document to store resumes for a job web site and create the External DTD file.
- 2. Create a XML schema for the book's XML document.
- 3. Present the book's XML document using cascading style sheets (CSS).
- 4. Write a XSLT program to extract book titles, authors, publications, book rating from the book's XML document and use formatting.

UNIT - III: WEB SERVICES BUILDING BLOCK

15

Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns and Faults - SOAP with Attachments Lab:

- 1. Use Microsoft DOM to navigate and extract information from the book's XML document.
- 2. Create a web service for temperature conversion with appropriate client program.

LECTURE	PRACTICAL	TOTAL
15	30	45

TEXT

- 1. Ron Schmelzer, Travis Vandersypen and Jason Bloomberg, "XML and Web Services", Pearson Education, 2002.
- 2. Eric Newcomer and Greg Lomow, "Understanding SOA with Web Services", PearsonEducation, 2005.
- 3. Sandeep Chatterjee and James Webber, "Developing Enterprise Web Services: An Architect's Guide", Prentice Hall, 2004.

REFERENCES

- 1. Frank P.Coyle, "XML, Web Services and the Data Revolution", Pearson Education, 2002.
- 2. Keith Ballinger, ".NET Web Services Architecture and Implementation", Pearson Education, 2003.

E REFERENCES

- 1. https://www.w3.org/
- 2. http://www.w3schools.com/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	3	3	2	2	2	1	2	2	3
CO 5	3	2	2	2	2	1	2	2	3
Total	15	13	10	10	10	5	10	13	15
Course	3	2	2	2	2	1	1	3	3

XCA502A SOFTWARE ENGINEERING

Course Outcomes:

CO1	C	Understand	Explain the various types of software process models							
CO2	C	Understand	Illustrate the concept of software planning activities, risk							
			management and estimation							
CO3	C	Knowledge	Describe the various software design models							
CO4	C	Understand	Derive and Illustrate the test case and various testing							
		Understand	methods							
CO5	C	Understand	Summarize the software configuration management and							
_			quality assurance							

COURSE CODE	COURSE NAME	L	T	P	C
XCA502A	SOFTWARE ENGINEERING	4	1	0	5
C:P:A = 5:0:0					
		L	T	P	Н
PREREQUISITE	Basic Concepts of Programming, Design	4	1	0	5
TINITE I. CORTIVAD	DE DDOCECC MODELC	.			1 =

UNIT- I: SOFTWARE PROCESS MODELS

15

A generic view of process - Process models: The waterfall model - Incremental model - Evolutionary model - Specialized model - The unified process-Agile process - Agile models

UNIT- II: SOFTWARE PROJECT AND RISK MANAGEMENT

15

Project management - Project planning - Resources - Project estimation - Software project scheduling- Risk management - System engineering — Requirements engineering

UNIT- III: SOFTWARE DESIGN

15

Design concepts – Design models – Pattern based design – Architectural design – Component level design – User interface : analysis and design

UNIT- IV: SOFTWARE TESTING

15

Software testing – Strategies – conventional software - Object oriented software – Validation testing – System testing – Debugging - Testing tactics – Testing fundamentals – White box testing – Basis path testing – Control structure testing – Black box testing.

UNIT -V: SCM AND QUALITY ASSURANCE

15

Software configuration and management – Features – SCM process – Software quality concepts – Quality assurance – Software review – Technical reviews – Formal approach to software quality assurance – Statistical software quality assurance - Reliability – Quality standards – Software quality assurance plan

LECTURE	TUTORIAL	TOTAL
60	15	7 5

TEXT

- 1. Roger Pressman.S., Software Engineering: A Practitioner's Approach, Sixth Edition, Mcgraw Hill, 2008.
- 2. Jalote Pankaj, An Integrated Approach to Software Engineering, Third Edition, Narosa Book Distributors Pvt Ltd, 2005.

REFERENCES

- 1. Carlo Ghezzi, Mehdi Jazayari, Dino Mandrioli, Fundamentals of Software Engineering, Prentice Hall Of India, 1991.
- 2. I. Sommerville, Software Engineering, Eighth Edition, Pearson Education, 2006

E REFERENCES

1. NPTEL, Software Engineering, Prof. N. L. Sarda Computer Science & Engineering Indian Institute of Technology, Bombay

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	1	3	2
CO 2	3	3	2	2	2	1	1	3	2
CO 3	3	3	2	2	2	1	1	3	2
CO 4	3	2	2	2	2	1	1	3	2
CO 5	2	2	2	2	2	1	1	3	2
Total	14	13	10	10	10	5	5	15	10
Course	3	3	2	2	2	1	1	3	2

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

XCA503A UNIX AND SHELL PROGRAMMING

Course Outcomes:

CO1	C	Understanding	Explain UNIX operating system and architectures
	P	Guided Response	Builds an operating system environment to work with
		_	various applications.
	A	Responding	Performs networking commands in an operating system
CO2	\mathbf{C}	Understanding	Explain UNIX File Systems and Commands
	A	Responding	Selects commands to perform the execution
000	~	TT 1 . 1'	
CO3		Understanding	Describe the operating system processes and its execution
	P	Guided Response	Manipulate the UNIX processes
CO4	C	Understanding	Explain the Shell Environment concepts
	P	Guided Response	Displays the Shell environment and processing technique
CO5	C	Understanding	Explain Shell Programming statements
	P	Set	Starts to work with Shell Programming
	A	Responding	Practices the Shell programming control structures

COURSE CODE	COURSE NAME	L	T	P	C
XCA503A	UNIX AND SHELL PROGRAMMING	4	0	1	5
C:P:A = 3:1.5:0.5					
		L	Т	P	Н
PREREQUISITE	Basic Concepts of Programming, Design	4	0	2	6
UNIT- I:INTRODUC	CTION TO UNIX			1	8

Unix Operating System – The System Administrator - Logging in – Logging out – Hands on Session – POSIX and the Single UNIX Specification – Linux and GNU - The UNIX architecture – Features of UNIX.

Lab:

- 1. Execution of various file/directory handling commands.
- 2. Shell scripts to check various attributes of files and directories.
- 3. Shell scripts to explore system variables such as PATH, HOME etc.

UNIT -II: FILE SYSTEM

18

File – File name – File System Hierarchy – Unix File System – Absolute Pathnames and commands – Home Directory – Unix Commands: pwd, cd, mkdir,rmdir,ls,cp,mv,cat,more,wc,lp- Converting between DOS and UNIX – Compression Programs.

Lab:

- 1. Use seed instruction to process /etc/password file.
- 2. Shell scripts to check and list attributes of processes.

UNIT-III: PROCESS

18

Process basics – The shell and init – Displaying Process Attributes – System processes and init – Process creation mechanism – inherited process attributes – Process states and zombies – signal handling – Running jobs in background.

Lab:

- 1. Write awk script that uses all of its features.
- 2. Write a shell script to display list of users currently logged in.
- 3. Write a shell script to delete all the temporary files.

UNIT- IV: SHELL 18

The shell as command processor – Shell offerings – pattern matching – Escaping and quoting – Redirection – Collective Manipulation - Special Files – Pipes – Creating a Tee – Command Substitution – Shell variables – Environment Variables.

Lab:

- 1. Write a shell script to ask your name, program name and enrolment number and print it on the screen.
- 2. Write a shell program to exchange the values of two variables.

UNIT- V: SHELL PROGRAMMING

18

Shell Scripts – read – command line arguments – Exit status of a command – Logical operation – The if conditional – Using test and [] to evaluate expressions – The case conditional – Computation and String handling – Looping statements – Manipulating positional parameters with set and shift – Shell Functions.

Lab:

- 1. Write a shell program to find the Fibonacci series.
- 2. Write a shell program to concatenate two strings and find the length of the resultant string.
- 3. Write a shell program to find factorial of given number.
- 4. Write a shell program to find the sum of all the digits in a given number.
- 5. Write a shell program to find the sum of the series sum=1+1/2+...+1/n.
- 6. Write a shell program to check whether a given string is palindrome or not.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
60		30	90

TEXT

1. Sumitabha Das, "Unix and Shell Programming", Tata McGraw Hill Publications, Fifth Edition, 2009, New Delhi.

REFERENCES

- 1. Sumitabha Das, "Unix Concepts and Applications", Third Edition, Tata McGraw Hill Publications, New Delhi.
- 2. Graham Glass and King Ables, "Unix for Programmers and Users", Third Edition, Pearson Education India (Low Prices Edition).

E REFERENCES

- 1. NPTEL, Prof. Sorav Bansal, IIT Delhi, "Operating System".
- 2. NPTEL, Prof. P.C.P.Bhatt, IISc Bangalore, "Operating System".

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	2	3	2	2	2	1	2	2	2
CO 5	3	2	2	2	2	1	2	2	2
Total	14	13	10	10	10	5	10	13	13
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

XCA504A ENTERPRISE RESOURCE PLANNING

Course Outcomes:

CO1 C Understanding
 CO2 C Understanding
 CO3 C Knowledge
 CO4 C Understanding
 CO5 C Understanding
 CO5 C Understanding
 CEXPLAIM The functionalities of Enterprise resource planning
 CHARACTERIZE the ERP implementation procedures
 Describes the elements of ERP
 CO4 C Understanding
 CO5 C Unders

COURSE CODE	COURSE NAME			L	Т	P	С
XCA504A	ENTERPRISE RESOUR	CE PLANNIN	\G	4	1	0	5
C:P:A = 5:0:0							
				L	T	P	Н
PREREQUISITE	DBMS, Programming			4	1	0	5
UNIT -I :INTRODUC	TION						15
ERP: An Overview, I	Benefits of ERP, ERP and	Related Tech	nologie	s, Bus	siness	Pro	cess
Reengineering (BPR),	Data Warehousing, Data Mir	ing, OLAP, So	CM				
UNIT- II: ERP IMPL	EMENTATION						15
ERP Implementation L	ifecycle, Implementation Mo	ethodology, H	idden C	osts, (Organ	izing	the
-	ors, Consultants and Users, C			,	O		,
UNIT- III: THE BUS	INESS MODULES						15
Business modules in a	an ERP Package, Finance,	Manufacturing	g, Hum	an Re	sourc	es, F	Plant
Maintenance, Materials	Management, Quality Mana	igement, Sales	and Dis	stribut	ion		
UNIT- IV: ERP PACI	KAGES						15
ERP Market Place, SA	P AG, PeopleSoft, Baan, JD	Edwards, Orac	le, QAI	o, SSA	<u> </u>		
	SENT AND FUTURE						15
Turbo Charge the ER	P System, EIA, ERP and	e-Commerce,	ERP a	ınd In	terne	t, Fu	iture
Directions	•						
		LECTURE	TUTO	RIAI	J T	OTA	L
		60]	15		75	,
TEXT							

1. Alexis Leon, "ERP Demystified", Tata McGraw Hill, New Delhi, 2000

REFERENCES

- 1. Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Planning", ThompsonCourseTechnology,USA,2001.
- 2. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning Concepts and Practice", PHI, New Delhi, 2003

E REFERENCES

1. ERP, Prof. P. K. Biswas, Dept. of Electronics and Electical Communication Engg., IIT, Kharagpur

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	1	2	2
CO 2	3	3	2	2	2	1	1	2	2
CO 3	3	3	2	2	2	1	1	2	2
CO 4	3	2	2	2	2	1	1	2	2
CO 5	2	2	2	2	2	1	1	2	2
Total	14	13	10	10	10	5	5	10	10
Course	3	3	2	2	2	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

XCA601 INTRODUCTION TO GRAPHICS DESIGN

Course Outcomes:

CO1 C Understand Understand various image file formats and attributes
 CO2 P Set Working with various images for different manipulations
 CO3 C Knowledge Understand painting and color options and tools
 CO4 P Set Design various invitations, posters and logo

CO5 P Set **Design** a brochure, card and website

COURSE CODE	COURSE NAME	L	Т	P	С
XCA601	INTRODUCTION TO GRAPHICS DESIGN	1	0	1	2
C:P:A = 1:1:0					
		L	T	P	Н
PREREQUISITE	Basic Concepts of Programming, Design	1	0	2	3
UNIT -I: IMAG	E AND FILE FORMATS			*	5

Image formats: Vector format - Pixel format - File Compression - File formats: Properties of Bitmap Images- Monitor resolution- Image resolution- Resolution for printing- Resolution for display- Pixilation- Interpolation.

UNIT-II: INTRODUCTION TO GIMP

5

Introduction to Vector Shapes and Bitmaps- Exploring the GIMPEnvironment- Using the file Browser Basic Photo Corrections

UNIT-III: WORKING WITH SELECTION TOOLS

5

Basics- Masks and Channels Retouching and Repairing- Working with Brushes- Customizing Brushes- Speed Painting- Matte Painting- Creating a workspace for painting- Using Color Palette- Painting and Editing. Basic Pen Tool- Techniques- Vectors Masks- Paths and Shapes-Advanced Layer Techniques.

Lab: 30

- 1. Create a poster for any event using GIMP
- 2. Make an album using GIMP
- 3. Create an invitation for a party
- 4. Create a post card with background scene
- 5. Make a web environment using GIMP
- 6. Make a template for web page using GIMP
- 7. Converting 2D logo into 3D view logo
- 8. Make a colorful brochure in GIMP
- 9. Business card design in GIMP
- 10. Using the blend effect in creating a vector flame
- 11. Website layout design in GIMP

LECTURE	PRACTICAL	TOTAL
15	30	45

TEXT BOOKS

- 1. Beginning GIMP: From Novice to Professional, Akkana Peck, Paper Back, Second Edition, 2008
- 2. Adobe Photoshop CC Bible, Lisa DaNaeDayley, Brad Dayley, 2014

REFERENCES

- 1. GIMP Pocket Reference, Sven Neumann, OReilly, 2000
- 2. GIMP Essential Reference, Alex Harford, Pearson Education, 1999

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	2	3	2	2	2	1	2	2	2
CO 5	3	2	2	2	2	1	2	2	2
Total	14	13	10	10	10	5	10	13	13
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

XCA 602A .NET TECHNOLOGIES

Course Outcomes:

CO1	C	Knowledge	Knowledge on .Net Technologies basic controls and events
CO2	C	Understand	Knowledge on Object Oriented Programming with C#
CO3	C	Understand	Understand and implement VB.Net
CO4	C	Understand,	Apply and Implement C#.Net and VB.Net using various tools
	P	Apply	
CO5	C	Understand,	Understand Framework and threads
	P	Apply	

COURSE CODE	COURSE NAME	L	T	P	C
XCA 602A	.NET TECHNOLOGIES	4	0	1	5
C:P:A = 4:1:0					
		L	T	P	Η
PREREQUISITE	Basic Concepts of Programming, Design	4	0	2	6
UNIT- I:INTRODU	JCTION TO .NET TECHNOLOGIES		•		18

Introduction to Web Technologies - HTML Basics - Scripts - Sample Programs - Advantages and Disadvantages of Client-side and Server-side Scripts - Overview of Client-side Technologies and Server-side Technologies. History of .NET - .NET Framework Components.

UNIT-II: INTRODUCTION TO C#

18

Introduction to C# - Overview of C#, Literals, Variables, DataTypes, Operators, Expressions, Control Structures-Methods, Arrays, Strings, Structures, Enumerations – OOPS:Classes, Objects, Inheritance, Polymorphism, Interfaces, Operator Overloading - Delegates, Events, Errors and Exceptions.

Lab:

- 1. Develop a C# .NET console application to demonstrate the conditional statements.
- 2. Develop a C# .NET console application to demonstrate the control statements.
- 3. Develop an application in C#.NET that demonstrates the windows controls
- 4. Demonstrate Multithreaded Programming in C#.NET
- 5. Demonstrate subroutines and functions in C#.NET

UNIT- III: INTRODUCTION TO VB.NET

18

Introduction VB.NET -IDE — Creating a shortcut to start VB.NET - Manoeuvrings the Toolbar — Auto-hide, Docking and Undocking, Placing and Resizing the Windows — Forms — Properties Window and Solution Explorer - Writing and Event Procedure — Execution - Basic Keywords — Data Types — VB.NET statements — Conditional statements - If Else — Select Case — Switch and Choose — Loops — Do — For Next — For Each Next — While — Arrays.

Lab:

- 1. Develop an application for deploying various built-in functions in VB.NET
- 2. Develop an MDI application for Employee Pay-roll transactions in VB.NET

UNIT- IV: APPLICATION DEVELOPMENT ON .NET

18

C#.NET : Building Windows Applications, VB.NET : Windows Forms — Working with Controls — Timer, Picture-box, Group-box, Combo-box, Horizontal and Vertical Scrollbar, Numeric-up-down, Track-bar, and Progress-bar — Subroutines and Functions in VB.NET — Database applications

Lab:

- 1. Construct a console application to demonstrate the OOP Concepts
- 2. Develop a web application in VB.NET for dynamic Login Processing

UNIT- V: ADO .NET CONNECTIVITY

18

Introduction to ADO.NET – ADO vs ADO.NET – Architecture – Data reader – data adopter - Accessing Data with ADO.NET, Programming Web Applications with Web Forms. ASP .NET applications with ADO.NET

Lab:

1. Develop a Windows application with database connectivity for core-banking transactions

LECTURE	INACITCAL	TUTORIAL	TOTAL
60	30	0	90

TEXT

- 1. E. Balagurusamy, "Programming in C#", Tata McGraw-Hill, 2004.
- 2. ShirishChavan, "Visual Basic.NET", Edition 2009, Pearson Education.Matt J. Crouch, "ASP.NET and VB.NET Web Programming", Edition 2012.

REFERENCES

1. Art Gittleman, "Computing with C# and the .NET Framework", Jones & Bartlett Learning, 2011

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
CO 1	3	3	2	2	2	1	2	3	3
CO 2	3	3	2	2	2	1	2	3	3
CO 3	3	2	2	2	2	1	2	3	3
CO 4	3	3	2	2	2	1	2	3	3
CO 5	3	2	2	2	2	1	2	3	3
Total	15	13	10	10	10	5	10	15	15
Course	3	3	2	2	2	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

XCA603A MOBILE COMPUTING

Course Outcomes:

CO1	C	Understand	Describes the medium access control layers
CO2	C	Understand	Characterize the wireless transmission technologies
CO3	C	Knowledge	Describe the mobile network layer and IP packet delivery
CO4	C	Understand	Comprehend TCP and the transmission mobile transport layer
	A	Originate	Characterizing mobile transport layer
CO5	C	Understand	Summarize the WAP and its applications

COURSE CODE	COURSE NAME	L	Т	P	C
XCA603A	MOBILE COMPUTING	4	1	0	5
C:P:A = 4.5:0:0.5					
		L	T	P	Н
PREREQUISITE	Basic Concepts of Programming, Design	4	1	0	5

UNIT-I: MEDIUM ACCESS CONTROL

12

Multiplexing- Hidden and exposed terminals-Near and far terminals. SDMA – FDMA – TDMA – CDMA- Comparison of Access Mechanisms – Telecommunication: GSM. Satellite Systems: Basics- Routing- Localization- Handover.

UNIT- II: WIRELESS NETWORKS

12

Wireless LAN: Advantages and Disadvantages-Infrared Vs Radio Transmission – Infrastructure Networks- Ad hoc Networks – Bluetooth- Wireless ATM: Working Group-Services- Reference Model – Functions – Radio Access Layer – Handover reference model- Requirements and Types.

UNIT- III: MOBILE NETWORK LAYER

12

Mobile IP : Goals – Assumptions and Requirement – Entities – IP packet Delivery- Agent Advertisement and Discovery – Registration – Tunneling and Encapsulation – Optimization – Reverse Tunneling – IPv6.

UNIT- IV: MOBILE TRANSPORT LAYER

12

Traditional TCP- Indirect TCP- Snooping TCP- Mobile TCP- Fast retransmit/ Fast Recovery-Transmission/ Timeout Freezing – Selective Retransmission.

UNIT- V:WAP

12

Architecture – Datagram Protocol- Transport Layer Security- Transaction Protocol- Session Protocol- Application Environment-Wireless Telephony Application.

LECTURE	TUTORIAL	TOTAL
60	15	75

TEXT

- 1. Jochen Schiller, Mobile Communications, Addison-Wesley, second edition, 2004.
- 2. Stojmenovic and Cacute, Handbook of Wireless Networks and Mobile Computing, Wiley, 2002, ISBN 0471419028.

REFERENCES

- 1. Reza Behravanfar, Mobile Computing Principles: Designing and Developing Mobile Applications with UML and XML, ISBN: 0521817331, Cambridge University Press, October 2004
- 2. Adelstein, Frank, Gupta, Sandeep KS, Richard III, Golden, Schwiebert, Loren, Fundamentals of Mobile and Pervasive Computing, ISBN: 0071412379, McGraw-Hill Professional, 2005.

E REFERENCES

1. http://nptel.ac.in/video.php?subjectId=117102062

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO	PSO
								8	9
3	3	2	2	2	1	1	2	2	3
3	3	2	2	2	1	1	2	2	3
3	3	2	2	2	1	1	2	2	3

3	2	2	2	2	1	1	2	2	3
2	2	2	2	2	1	1	2	2	2
14	13	10	10	10	5	5	10	10	14
3	3	2	2	2	1	1	2	2	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

COURSECODE	COURSE NAME	L	Т	P	C
XCA602	Project Work	0	1	8	6
C:P:A = 0:3:2					
		L	T	P	H
		0	1	8	9

CO1 P Guided Response Practice the Requirements Analysis

CO2 P Guided Response Create the Design for their project

CO3 P Guided Response
 CO4 P Guided Response
 CO5 P Guided Response
 CO5 P Guided Response
 CO5 P Guided Response
 CO5 P Guided Response

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO 1	PSO 2
CO 1	3	3	2	2	2	2	2	3	3
CO 2	3	3	2	2	2	2	2	3	3
CO 3	3	3	2	2	2	2	2	3	3
CO 4	3	3	2	2	2	2	2	3	3
CO 5	3	3	2	2	2	2	2	3	3
Total	15	15	10	10	10	10	10	15	15
Course	3	3	2	2	2	2	2	3	3

YCA101- DATABASE MANAGEMENT SYSTEMS

Course Outcomes:

CO1	C	Knowledge	Describe the database architecture and its application								
CO2	C	Understand	Describe about the relational model and algebra								
CO3	C	Understand	Explain the data model and accessing of data.								
CO4	C	Knowledge	Describe the normalization concept for a table of data								
CO5	C	Understand	Illustrate the query technical processing in database								
			management								

Course Code	Course Name	L	T	P	С
YCA101	Data Base Management Systems	4	1	0	4
C:P:A = 4:0:0		L	Т	P	Н
		4	1	0	5

UNIT- I: Introduction to database Management System

15

Basic concepts-Database & Database Users-Characteristics of the Database-Database Systems-Concepts & Architecture-Date Models. Schemas & Instances-DBMS Architecture & Data Independence-Data Base languages & Interfaces-Data Modeling using the Entity-Relationship Approach

UNIT-II: Relational Model Concept

15

Relational Model - Languages &Systems - Relational-Data Model & Relational -Algebra Relational Model Concepts-Relational Model Constraints-Relational Algebra-SQL - A-Relational Database Language-Date Definition in SQL-View & Queries in SQL-Specifying Constraints & Indexes in SQL-Specifying Constraints & Indexes in SQL a Relational Database Management Systems-ORACLE/INGRES

UNIT-III: Data model

15

Conventional Data Models & Systems Network-Data Model & IDMS Systems Membership types & options in a set DML for the network model-Navigation within a network database-Hierarchical Data Model & IMS System-Hierarchical Database structure- HSAM - HISAM - HDAM & HIDAM organization-DML for hierarchical model-Overview of IMS

UNIT- IV: Relational Data Base Design

15

Relational Data Base Design-Function Dependencies & Normalization for Relational - Databases - Functional Dependencies-Normal forms based on primary keys (INF, 2NF, 3NF & BCNF)-Lossless join & Dependency preserving decomposition

UNIT- V: Concurrency Control & Recovery Techniques

13

Concurrency Control & Recovery Techniques-Concurrency Control Techniques-Locking Techniques-Time stamp ordering-Granularity of Data items-Recovery Techniques-Recovery concepts-Database backup and recovery from catastrophic failures - Concepts of Object oriented data base management systems

LE		TUTORIAL	IOIAL
	60	15	75

TEXT

- 1. Abraham Silberschatz, Henry Korth, S.Sudarshan, Database Systems Concepts, Sixth Edition, McGraw Hill, 2010.
- 2. Raghu Ramakrishnan and Johannes Gehrke, Database management systems, Third

Edition,2002

REFERENCES

- 1. Date, C.J., "An Introduction to Database Systems", Narosa Publishing House, NewDelhi.
- 2. Desai, B'., "An Introduction to Database Concepts", Galgotia Publications, New Delhi.
- 3. Elmsari and Navathe, "Fundamentals of Database Systems", Addison Wesley, New York.
- 4. Ullman, J.D., "Principles of Database Systems", Galgotia Publications, New Delhi

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	3	3	3	3	2	2	3	3
CO 2	3	3	3	2	2	2	2	2	3	3
CO 3	3	2	2	2	2	2	2	2	3	3
CO 4	2	3	2	2	2	2	2	2	2	2
CO 5	3	2	2	2	2	2	2	2	2	2
Total	14	13	12	11	11	11	10	10	13	13
Course	3	3	3	3	3	3	1	1	3	3

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCA102 COMPUTER NETWORKS

Course Outcomes:

CO1 C Understand **Define** various methods of topology CO₂ C Understand **Understand** and apply layer protocol

CO₃ C Understand *Illustrate* various counting and inclusion theory

CO₄ C Understand **Describe** LAN concepts

CO₅ C Understand Explain TCP/IP

Course Name	\mathbf{L}	T	P	C
Computer Networks	4	1	0	4
	L	T	P	Н
	4	1	0	5
			Course Name Computer Networks 4 1	Course Name Computer Networks L 1 P 1 0

UNIT- I: Introduction to computer network

15

Advantages of networks - structure of the communications network - point-to-point and multidrop circuits - data flow and physical circuits - network topologies - topologies and design goals - Hierarchical topology - horizontal topology (Bus) - star topology - ring topology - mesh topology - The telephone network - switched and non-switched options fundamentals of communications theory - channel speed and bit rate - voice communications and analog waveforms - bandwidth and the frequency spectrum - connecting the analog and digital worlds - digital worlds - digital signals - the modem - asynchronous and synchronous transmission - Wide area and local networks - connection oriented and connectionless networks, classification of communications protocols - time division multiple access (TDMA) - time division multiplexing (TDM) - carrier sense (Collision) systems - token passing - peer-to-peer priority systems - priority slot - carrier sense (collision free) systems - token passing (priority) systems.

UNIT- II: Layered Protocols and the OSI model

15

Goals of Layered Protocols - network design problems - communication between layers - introduction to standard organizations and the OSI model - standards organizations - Layers of OSI - OSI status - Polling/Selection Protocols : Character and bit protocols - binary synchronous control (BSC) HDLC - HOLC options - HDLC frame format - code transparency and synchronization - HDLC transmission process - HDLC subsets - SDLC - Protocol conversion.

UNIT- III:Local Area Networks

15

Way LANs - Primary attributes of a LAN - Broadband and baseband and base LANs - IEEE LAN standards - e1ationship of the 802 standards to the ISO/CCITT model - connection options with LANs - LLC and MAC protocol data units - LAN topologies and protocols - CSMA/CO and IEEE 802.3 - token ring (Priority) - token bus and IEEE 802.4 - metropolitan area networks (MANs) - ANSI fiber distributed data interface - Switching and Routing in Networks: Message switching - packet switching - when and when not to use packet switching - packet routing - packet switching support to circuit switching networks.

UNIT- IV: The X.25 Network and Supporting Protocols

15

Features of X.25 - Layers of X.25 and the Physical layer - X.25 and the data link layer - companion standards to X.25 - features of X.25 - X.25 channel options - flow control principles - other packet types - X.25 logical channel states - packet formats - Internet working - connectionless mode networks - the frame relay and X.25 stacks.

UNIT- V: TCP/IP and Personal Computer Networks

15

TCP/IP and internetworking - example of TCP/IP operations - related protocols ports and sockets - The IP address structure - major features of IP - IP datagram - Major IP services - IP source routing - value of the transport layer - TCP - Major features of TCP - passive and active operation - the transmission control block (TCP) - route discovery protocols - examples of route discovery protocols - application layer protocols

Personal computer communications: Characteristics - error handling - using the personal computer as a server - linking the personal computer to mainframe computers - tilt: transfer on personal computers - personal computers and local area networks - network operating systems (NOSs) - common IBM PC LAN protocol stacks.

LECTURE	TUTORIAL	TOTAL
60	15	7 5

TEXTBOOK

- 1. Andrew S. Tanenbaum, Computer Networks, Fourth Edition, Prentice Hall PTR; 4th edition, 2002
- 2. Computer Networking: A Top-Down Approach, by J. F. Kurose and K. W. Ross, Addison Wesley, 5th Edition, March 2009, ISBN-13: 978-0136079675. (Chapters 1-6)

REFERENCE

- 1. Black, V., "Computer Networks. Protocols, Standards and Interfaces", Prentice Hall of India, 1996
- 2. Stallings, W., "Computer Communication Networks", (4th edition). Prentice Hall of India. 1993. Tanneabaum, A.S.. "Computer Networks", Prentice Hall of India, 19'81.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	2	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	14	13	10	10	10	5	10	10	13	13
Course	3	3	2	2	2	1	1	1	3	3

2- Medium relation 1- Low relation

YCA103 - OBJECT ORIENTED PROGRAMMING, ANALYSIS AND DESIGN

Course Outcomes

CO1 C Knowledge **Describe** various methods to define object modelling

CO₂ C Understand *Understand* and construct modeling concepts

Describe and **Discuss the** concepts of operations CO3 C Knowledge

CO4 C Knowledge **Describe** and apply the concepts of designs

CO5 C Knowledge **Describe** the concepts of implementation of an application

Course Code	Course Name	L	Т	P	C
YCA103	Object Oriented Programming, Analysis and	4	0	0	4
	Design				
C:P:A = 4:0:0		L	Т	P	H
		4	0	0	4

UNIT- I: Object modeling

12

Object modelling: Objects and classes - Links and associations - Generalization and inheritance.

UNIT-II: Grouping constructs

12

Grouping constructs - Aggregation - Generalization as extension and restriction - Multiple inheritance - Meta data - candidate keys - Dynamic modelling: Events and states Nesting -Concurrency

UNIT – III: Functional modeling

12

Functional modelling: Data flow diagrams - Specifying operations - Analysis: Object modelling -Dynamic modelling - functional modelling - Adding operations - Iteration.

UNIT- IV: System design and object design

12

System design: Subsystems - Concurrency - Allocation to processors and tasks - Management of data stores - Control implementation -. Boundary condition - Architectural frameworks - Object design: Optimization - implementation of control - Adjustment of inheritance - Design of associations - Documentation - Comparison of methodologies.

UNIT -V : Implementation

12

Implementation: Using a programming language - a database system - Programming styles reusability - extensibility - robustness - Programming-in-the-large - case study.

LECTURE	TUTORIAL	TOTAL
60	0	60

TEXT

- 1. Craig Larman, "Applying UML and Patterns: An Introduction to object-oriented Analysis and Design and iterative development", Third Edition, Pearson Education, 2005
- 2. Alan Dennis, Barbara H. Wixom, and David Tegarden, Systems Analysis And Design with UML Version 2.0—An Object-Oriented Approach, 3nd edition, John Wiley & Sons, Inc., 2009 (required)
- 3. T5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley.
- 4. OBJECT-ORIENTED ANALYSIS AND DESIGN With applications SECOND EDITION Grady Booch Rational Santa Clara, California

REFERENCES

- 1. Booch, G., "Object Oriented Analysis and Design". 2nd edition, Benjamin/Cummins Publishing Co.. Redwood City, CA, U.S.A., 1994.
- 2. Rebecca Wirfs-Brock, et. al, Designing Object Oriented Software", Prentice Hall of India.1996.
- 3. Rumbaugh, J., Et al "Object Oriented Modelling and Design". Prentice Hall of India, New Delhi, 1991

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	3	2	2	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	13	10	10	10	5	5	5	10	10
Course	3	3	2	2	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA104-MANAGEMENT SUPPORT SYSTEMS

Course Outcomes

CO1	C	Knowledge	Discussabout DSS concept and components
CO2	C	Understand	Describe the data and model management for DSS
CO3	C	Knowledge	Describe about various DSS functionality
CO4	C	Understand	Understand the concept of DSS Interface and Group discussion
CO5	C	Understand	Describe Expert System

Course Code	Course Name	L	Т	P	C
YCA104	Management Support Systems	3	0	0	3
C:P:A = 3:0:0		L	T	P	Н
		3	0	0	3
UNIT- I: Intro	oduction		<u> </u>		09

Introduction to the concept of Decision Support System - Components of DSS - Dialogue Management

UNIT –II: Decision Support System

09

Data Management and Model Management for DSS - Examples of different type of DSS - Systems Analysis and Design for DSS

UNIT – III: DSS functionality

09

Models in the context of DSS - Algorithms and Heuristics - DSS Applications in different functions

UNIT- IV:Interface and Group Discussion

09

Design of interfaces in DSS - An overview of DSS generators - Group Decision in Support Systems (GDSS) and Decision Conferencing.

UNIT -V :Introduction of Expert Systems

09

Introduction of Expert Systems - Expert Systems in Management - Case Study on Expert System - Introduction to GIS - MSS based on GIS - Case Studies; Executive Information Systems (EIS).

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT

1. 1.Lucas, H.C., "Information system concepts for management", 5th edition, McGraw Hill,New York. 1994.

- 2. W S Jawadekar, A O'Brien ., "Management Information Systems"
- 3. Laaudon and Ludon, "Management Information Systems".

REFERENCES

- 1. Bhatnagar, S.C. and Ramani K. V., "Computers and Information Management", Prentice Hall of India. New Delhi, 1992.
- 2. Issue dedicated of GDSS & Expert Systems, JMIS, 10, 3, 1993-94.
- 3. Kroenke, D., "Management information systems", 2nd edition, Mitchell McGraw Hill, New York. 1992.
- 4. Maryam Alvi, "Group Decision support Systems, Info. Sys. Mgt (ISM)", Vol. 8. No.3 Summer 91.
- 5. Sprauge, R.H., and McNurlin, B.C., "Information Systems Management in Practice", 3rd ed.
- 6. Prentice Hall international. New Jersey, 1993.
- 7. Sprague. R.H. and Carlson, E.D. .. "Building Effective Decision Support Systems", Prentice Hall. New Jersey, 1982.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	1	1	1	1	1	1
CO 2	2	1	1	1	1	1	1	1	1	1
CO 3	2	2	1	1	1	1	1	1	1	1
CO 4	2	2	1	1	1	1	1	1	1	1
CO 5	1	2	1	1	1	1	1	1	1	1
Total	09	08	05	05	05	05	05	05	05	05
Course	03	02	01	01	01	01	01	01	01	01

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA105 -MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS

Course Outcomes:

CO1	C	Knowledge	Discuss the basic fundamentals of statistics and measures
CO2	C	Understand	Identify the concept of sampling technique
CO3	C	Knowledge	Describe about the charts and analysis
CO4	C	Understand	Discuss about the statistics analysis
CO5	C	Understand	Describe the various implementation

Course Code	Course Name	L	Т	P	C
YCA105	Mathematical foundation for Computer	4	1	0	5
	Applications				
C:P:A = 5:0:0		L	Т	P	Н
		4	1	0	5
UNIT- I: Introduct	ion		<u> </u>		15

Basic Statistics: Measures of central tendencies - Measures of dispersion - Frequency distributions - Moments - Correlation coefficient - Regression.

UNIT- II: Sampling statistical computing

15

Sampling: Theory of sampling - population and sample - Survey methods and estimation Statistical inference - Testing of hypothesis and inference

UNIT- III: Statistics For Business

15

Computing frequency charts - Regression analysis.

UNIT- IV: Data Analysis

15

Time series and forecasting

UNIT- V: Implementation

15

Implementation: Using a programming language - a database system - Programming styles - reusability - extensibility - robustness - Programming-in-the-large - case study.

LECTURE	TUTORIAL	TOTAL	
60	15	7 5	

TEXT

1. Tanner, M. A.," Tools for Statistical Inference: Methods for the Exploration of Posterior Distribution" Springer Verlag: New York., third Eition., 1996

REFERENCES

1. Affi, A.A., "Statistical Anal);sis: A Computer Oriented Approach". Academic Press, New York, 1979. Hogg. R. v..Et. Al., "Introduction to Mathematical Statistics", American Publishing, New York. 1980.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO
									1	2
CO 1	3	2	2	1	2	2	2	2	2	2
CO 2	3	2	2	2	2	2	2	2	2	2
CO 3	2	2	2	2	2	2	2	2	2	2
CO 4	2	2	2	1	2	2	2	2	2	2
CO 5	2	2	2	2	2	2	2	2	2	2
Total	12	10	10	8	10	10	10	10	10	10
Course	3	2	2	1	2	2	2	2	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA106 -DATABASE MANAGEMENT SYSTEMS LAB

Course Outcomes:

CO1	P	Guided	Build the concept of DBMS programming and its fundamental
000	D	response	D '11 1' 1' 1'
CO2	Р	Guided	Build an application program using concepts
		response	
CO3	P	Apply	Develop an application program using a data model
		Guided	Develop the query technical processing in database
		Response	managements
CO4	P	Guided	Explain and Implement the normalization concept for a table
		response	of data
CO5	A	Apply	Apply the query technical processing in database managements

Course Code	Course Name	L	Т	P	C
YCA106	Database Management Systems Lab	0	0	4	2
C:P:A = 0:1.5:0.5		L	Т	P	Н
		0	0	4	4
		<u> </u>	<u> </u>		60`

- 1. Create table in SQL using Accounting for a shop database
- 2. Develop a Database design in E-R model and Normalization using Database manager for a magazine agency or newspaper agency
- 3. Implement the Nested Queries using Ticket booking for performances
- 4. Create views for a particular table using Preparing greeting and birth day cards Personal accounts - insurance, loans, mortgage payments etc.
- 5. Implement Join operations in SQL using Doctor's diary, billing
- 6. create a program to implement JDBC connectivity using Personal bank account
- 7. create a program to implement ODBC connectivity using Class marks management

- 8. Create a webpage for Video tape library using JDBC Connectivity
- 9. How to update a data by using JDBC connectivity with Personal library.
- 10. Create a webpage for Class marks management library using JDBC Connectivity.
- 11. Write PL/SQL procedure for an application using Hostel accounting
- 12. Write PL/SQL procedure for an application using History of cricket scores
- 13. Write PL/SQL procedure for an application using Cable transmission program manager

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	1	1	1	1	2	2
CO 2	2	1	1	1	1	1	1	1	2	2
CO 3	2	1	2	1	1	2	2	1	2	2
CO 4	2	2	1	1	2	1	1	2	2	2
CO 5	1	1	1	1	1	1	1	1	2	2
Total	09	06	06	05	06	06	06	06	10	10
Course	3	2	2	1	2	2	2	2	3	3

2- Medium relation 1- Low relation

YCA107 - MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS LAB USING JAVA

Course Outcomes:

CO1	P	Guided	Practice the basic Computer generation of random numbers
		Response	
CO2	A	Apply	Understand and apply set theory and Relations
CO3	P	Guided	Describe various counting and inclusion theory
		Response	
CO4	A	Apply	Applyfrequency charts for large data sets
CO5	A	Apply	Apply statistical package to perform factor analysis and tests of
			significance

	Significance				
Course Code	Course Name	L	Т	P	C
YCA107	Mathematical Foundation for Computer	0	0	4	2
	Applications Lab using Java				
C:P:A = 0:1:1		L	Т	P	Н
		0	0	4	4
			•		60

- 1. Computer generation of random numbers with different distributions.
- 2. Writing a questionnaire analysis program for data from surveys.

- 3. Analysis of significance of the results of survey.
- 4. Curve fitting to experimental data.
- 5. Programs to obtain frequency charts for large data sets and fitting a distribution.
- Use of a statistical package to perform factor analysis and tests of significance.
- Calculating and displaying regression statistics.
- Real Statistics Using Excel
- Calculating and displaying correlation statistics

LECTURE	PRACTICAL	TOTAL	
0	60	60	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	1	1	1	1	2	2
CO 2	2	1	1	1	1	1	1	1	2	2
CO 3	2	1	2	1	1	2	2	1	2	2
CO 4	2	2	1	1	2	1	1	2	2	2
CO 5	1	1	1	1	1	1	1	1	2	2
Total	09	06	06	05	06	06	06	06	10	10
Course	3	2	2	1	2	2	2	2	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA201 ADVANCED OPERATING SYSTEMS CONCEPTS

Course Outcomes:

CO1 (C Understand	Explain the operating system functions
CO2 (C Understand	Implement the process and various process scheduling
		algorithms
CO3 (C Knowledge	Outline process cooperation and inter process communication
CO4 (C Understand	Describe various memory management concepts
CO5 (C Understand	Implement and understand the file organization

COURSE NAME	L	T	P	C
ADVANCED OPERATING SYSTEMS	4	1	0	4
CONCEPTS				
	L	T	P	Н
C++ concepts, Windows Programming	4	1	0	5
	ADVANCED OPERATING SYSTEMS CONCEPTS	ADVANCED OPERATING SYSTEMS CONCEPTS L	ADVANCED OPERATING SYSTEMS 4 1 CONCEPTS L T	ADVANCED OPERATING SYSTEMS 4 1 0 CONCEPTS L T P

UNIT I OVERVIEW OF OPERATING SYSTEMS

15

Functionalities and objectives of operating Systems- processor register- instruction execution- interrupts- types of interrupts.

UNIT II PROCESS MANAGEMENT

15

Process concepts: process states- process control block- process and threads- processor scheduling- scheduling algorithms.

UNIT III PRINCIPLES OF CONCURRENCY

15

Critical Sections - Mutual Exclusion - Process Cooperation- Inter Process Communication-Deadlock Prevention- Detection- Avoidance- Semaphores- Monitors-Message Passing.

UNIT IV MEMORY MANAGEMENT

15

Virtual Memory Concepts- Paging and Segmentation- Address Mapping- Virtual Storage Management- Page Replacement Strategies.

UNIT V FILE ORGANIZATION

15

Blocking and buffering, file descriptor- file and directory structures- I/O devices- disk scheduling.

LECTUR	TUTORIA	PRACTICAL	TOTA
E	L	S	L
60	15	-	75

TEXT

- 3. William Stallings, Operating Systems, Prentice Hall of India (P) Ltd, 7th edition-2012.
- 4. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, Sixth edition. Addison-Wesley (2003).

REFERENCES

- 3. Andrew Tanenbaum, "Modern Operating Systems", Pearson, 2008.
- 4. Silberschatz and P. B. Galvin, "Operating System Concepts", 7th Edition, Addison Wesley Publication.

E REFERENCES

- 4. http://www.nptel.ac.in/courses/106108101/
- 5. http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Operating%20Systems/New_index1.html
- 6. http://www.nptel.ac.in/downloads/106108101/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	2	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	14	13	10	10	10	5	10	10	13	13
Course	3	3	2	2	2	1	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCA202 - SOFTWARE ENGINEERING

Course Outcomes:

CO1	C	Knowledge	<i>Describe</i> various methods to define lifecycle models.					
CO2	C	Understand	Understand and analyse the software inspections					
CO3	C	Knowledge	Describe and apply various software tools					
CO4	C	Understand	Describe and	<i>solve</i> issu	es in mo	odern (GUI	
CO5	C	Understand	Understand	CASE	tools	and	Software	configuration
			management.					

Course Code	Course Name	L	T	P	С
YCA202	Software Engineering	4	1	0	4
C:P:A = 4:0:0					
		L	T	P	Н
		4	1	0	5
UNIT- I. Soft	ware life cycle	i			15

UNIT- I: Software life cycle

15

Models: Waterfall, Spiral - Prototyping Fourth generation techniques - SW Process - Software requirements specification (SRS)Fact-Finding Techniques - Characteristics of a good SRS: Unambiguous. Complete - Verifiable - Consistent - Modifiable - Traceable and usable during the operation and Maintenance phase - Prototype outline for SRS.

UNIT- II: Software Inspection

15

Communication Skills for the System Analyst - Review/Inspection Procedure: Document. Composition of the inspection team - check list - reading by the inspectors - Recording of the defects and action recommended - Students should practice inspecting small requirement specifications for good characteristics.

UNIT- III: System Analysis and SW Design

15

SA tools & Techniques - DFD - Entity Relationship Diagrams - Project Dictionary - System Design Tools and Techniques - Prototyping - Structured Programming.

UNIT- IV: User Interface Design and User Manual

15

Elements of good design - Design issues - Features of a modern GUI - Menus - scrolling - windows - Icons - Panels - Error messages, etc.

User Profile - Contents of an User Manual: Student is urged to install and use a software using its user manual and report the strengths and weaknesses of that user manual.

UNIT- V: Software Configuration Management and CASE

15

Software Configuration Management

Base Line - SCM process - Version Control - Change Management.

Computer Aided Software Engineering

CASE - Tools for Project management Support - Analysis & design - Programming - Prototyping - Maintenance - Future of CASE.

LECTURE	TUTORIAL	TOTAL
60	15	75

TEXT

- 1. Rajib Mall, Fundamentals of Software Engineering, PHI Publication.
- 2. K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age International Publishers.
- 3. Carlo Ghezzi, M. Jarayeri, D. Manodrioli, Fundamentals of Software Engineering, PHI Publication.
- 4. Ian Sommerville, Software Engineering, Addison Wesley.
- 5. Kassem Saleh,"Software Engineering", Cengage Learning.
- 6. Pfleeger, Software Engineering, Macmillan Publication

REFERENCES

1.Beizer, B., "Software Testing Techniques", Second Edition. Van Nostrand Reinhold. New York. 1990.

- 2.IEEE Guide to Software Requirements Specifications, Std 830-1984. In" IEEE Standards Collection. 1993. Available from IEEE Standards Board, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. NJ, USA.
- 3.IEEE Standard for Software User Documentation, Std 1063-1987.
- 4.Pressman, R.S., "Software engineering" A Practitioner's Approach", Third Edition, McGraw Hill. International Edition, 1992.
- 5. Whitten, Bentley and Barlow, "System Analysis anc' Design Methods", Second Edition, Galgotia Publications, 1996.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	3	2	2	1	1	1	2	2
CO 2	3	3	3	2	2	1	1	1	2	2
CO 3	3	3	3	2	2	1	1	1	2	2
CO 4	3	3	3	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	14	14	10	10	5	5	5	10	10
Course	3	3	3	2	2	1	1	1	2	2

2- Medium relation 1- Low relation

YCA203 ADVANCED DATA STRUCTURES

Course Outcomes:

C	Understand	<i>Illustrate</i> the classification of Linear Data Structures.
C	Understand	Explain the functions of Non Linear Data Structures
C	Understand	<i>Describe</i> the operations of Advanced Data Structures
C	Knowledge	Explain the various algorithms of Data Structures
C	Understand	Describe the concepts and procedures sorting.
	C C C	C Understand C Understand C Understand C Knowledge C Understand

COURSE CODE	COURSE NAME	L	T	P	C
YCA203	Advanced Data Structures	0	4		
C:P:A = 4:0:0					
		L	T	P	Н
PREREQUISITE	C Programming	4	0	0	4
_					

Linear data Structures – Arrays, Records, Linked Lists – Singly, Doubly, Circular linked lists - Stack: Definition and examples, Representing Stacks - Queues: Definition and examples, priority queue, Dequeue, IRD, ORD – Applications of Stack, Queue and Linked Lists- Hashing

UNIT -II: NON-LINEAR DATA STRUCTURES

12

Non-Linear data Structures - Binary Trees - Binary Tree Representations - node representation, internal and external nodes, implicit array representation - Operations on binary trees - Binary tree Traversals - Binary search trees- insertion, deletion, find. Graphs - Representation - Linked representation of Graphs - Graph Traversals.

UNIT-III: ADVANCED CONCEPTS

12

Advanced data structures –Data structures for disjoint sets- AVL trees - Red-black trees – insertion and deletion – B-trees – Definition, insertion, deletion – Splay tree, Binomial heaps – operations.

UNIT- IV: ALGORITHMS

12

Single source shortest path algorithms — Bellman-Ford algorithm and Dijkstra's algorithm-Transitive closure -Topological sort — Trie Structures.

UNIT- V: SORTING TECHNIQUES

1

Basic sorting techniques – selection sort, bubble sort, insertion sort - Merging and merge sort – Basic Search Techniques – linear search and binary search – recursive and non-recursive algorithms.

LECTURE	TUTORIAL	PRACTICALS	TOTAL
60	0	0	60

TEXT

- 3. A.K. Sharma, "Data Structures using C", Pearson Education, 2013
- 4. Robert L. Kruse"Data Structures and Program Design in C, Pearson Education, 2013

- 5. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C.Stein, "Introduction to Algorithms", 3rd Edition, MIT Press, 2009.
- 6. S. Lipschutz and G.A.V. Pai, "Data Structures", Tata McGraw-Hill, 2010.

REFERENCES

- 3. Robert L Kruse: Data Structures and program designing using C, 2013.
- 4. Kamthane: Introduction to Data Structures in C, Pearson Education, 2005
- 5. M.A.Weiss, "Data Structures and Problem Solving using Java", 4th Edition, Addison Wesley, 2009.
- 6. D. Samanta, "Classic Data Structures", 2nd Edition, PHI, 2009.
- 7. P. Brass, "Advanced Data Structures", Cambridge University Press, 2008

E REFERENCES

- 3. NPTEL, Data structures and algorithm ,Prof. Hema A Murthy,IITMadras,Prof. Shankar Balachandran,IITMadras,Dr. N S. Narayanaswamy,IIT Madras
- 4. NPTEL, Data structures and algorithm ,Prof. Naveen Garg,IIT Delhi

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 8	PSO 9
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	3	3	2	2	2	1	2	2	3	2
CO 5	3	2	2	2	2	1	2	2	3	2
Total	15	13	10	10	10	5	10	10	15	13
Course	3	3	2	2	2	1	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCA205 – ADVANCED OPERATING SYSTEM CONCEPTS LAB

Course Outcomes:

CO1 P **Guided Response Practice** the basicscheduling algorithms CO₂ A Apply *Understand* and apply algorithms to avoid dead lock **Practice the** various page replacement algorithms CO₃ P Guided Response CO₄ A Apply *Apply*the algorithms for optimal page replacement CO₅ A Apply Apply the linear, non-linear and sorting algorithms

Course Code	Course Name	\mathbf{L}	Т	P	C
YCA205	Advanced Operating System Concepts Lab	0	0	4	2
C:P:A = 0:1:1		L	Т	P	Н
		0	0	4	4
		<u>i</u>			60

- 1. Simulate the FCFS CPU Scheduling Algorithms
- 2. Simulate the SJF CPU Scheduling Algorithms.
- 3. Simulate the Priority CPU Scheduling Algorithms.
- 4. Simulate the Round Robin CPU Scheduling Algorithms
- 5. Simulate MVT and MFT
- 6. Simulate Bankers algorithm for Deadlock Avoidance
- 7. Simulate FIFO Page Replacement Algorithms
- 8. Simulate LRU Page Replacement Algorithms
- 9. Simulate Optimal Page Replacement Algorithms
- 10. Implement linear and nonlinear data structures to solve real-time problems
- 11. Perform searching and sorting techniques of data structures to different application domains

						LEC	LECTURE		CICAL	TOTA	
						0		6	50	60	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	
CO 1	2	1	1	1	1	1	1	1	2	2	
CO 2	2	1	1	1	1	1	1	1	2	2	
CO 3	2	1	2	1	1	2	2	1	2	2	
CO 4	2	2	1	1	2	1	1	2	2	2	
CO 5	1	1	1	1	1	1	1	1	2	2	
Total	09	06	06	05	06	06	06	06	10	10	
Course	3	2	2	1	2	2	2	2	3	3	

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCA206- CASE TOOLS LAB

Course Outcomes:

CO1	P	Guided	Manipulate various methods to define CASE tools
		Response	
CO2	P	Set	Developing Relational databases
CO3	P	Guided	Describe and implement various Application development tools
		Response	
CO4	P	Set	Describe and solve problems in developing application software
CO5	P	Guided	Developing Management tools
		Response	

Course Code	Course Name	L	T	P	C
YCA206	Case Tools Lab	0	0	4	2
C:P:A = 0:2:0					
		L	Т	P	Н
		0	0	4	4
		<u>i</u>	L	i	60

The lab sessions will have experiments on the following:

- 1. Use of diagramming tools for system analysis, such as Turbo analyst, for preparing Data Flow diagrams and E-R diagrams.
- 2. Use of tools for relational database design such as relational Designer.
- 3. Identify Use Cases and develop the Use Case model.
- 4. Identify the conceptual classes and develop a domain model with UML Class diagram
- 5. Draw relevant state charts and activity diagrams.
- 6. Use of toots such as Power Builder, Delphi, Magic etc. in developing application software including interactive data-entry screens,
- 7. Transaction processing
- 8. Report Generations, etc.
- 9. Use of tools for managing the process of software development such as Source Code Control System (SCCS).
- 10. Revision Control System (RCS), Make etc.

References

Products manuals from concerned vendors

Keminghan, B.W., Pike, R., '6'fbe Unix Programming Environment", Prentice Hall of India, New Delhi, 1984.

LECTURE	PRACTICAL	TOTAL
0	60	60

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	3	2	2	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	13	10	10	10	5	5	5	10	10
Course	3	3	2	2	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA301-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Course Outcomes:

CO1	C	Knowledge	Describe various methods to define AI techniques
CO2	C	Understand	Understand and apply set theory and Relations
CO3	C	Knowledge	Describe and apply various counting and Predicate Logic
CO4	C	Understand	Describe and solve problems in Probabilistic reasoning
CO5	C	Understand	UnderstandConcept of learning the expert systems

COURSE CODE	COURSE NAME	L	T	P	C
YCA301	Artificial Intelligence and Machine	4	0	0	4
	Learning				
C:P:A = 4:0:0					
		L	T	P	Н
		4	0	0	4
UNIT -I: AI Techniq	iues	***************************************			12

AI techniques-search knowledge, abstraction- natural language processing- vision and speech processing- Games-theorem proving- robotics - expert systems.

UNIT -II : State Space Search

12

State space search: Production systems- Search space control: Depth first, breadth first search, heuristic search - Hill climbing - best first search - branch and bound.

UNIT- III: Predicate Logic

12

Minimax search: Alpha-Beta cut offs- Predicate Logic: Skolemizing queries - Unification. Modus pone - Resolution - dependency directed backtracking

UNIT- IV: Backtracking

12

Rule Based Systems-Forward reasoning-Conflict resolution-Backward reasoning-

Use of no backtrack-Structured Knowledge Representations- Semantic Net-slots, exceptions and defaults Frames- Probabilistic reasoning-Use of certainty factors-Fuzzy logic.

UNIT- V: Expert Systems

Concept of learning-learning automation-genetic algorithm- learning by induction-neural netsback propagation-Need and justification for expert systems- Knowledge acquisition-Case studies: MYCIN, RI.

LECTURE	TUTORIAL	TOTAL
60	0	60

TEXT

1. Stuart J.Russell and Peter Norvig., "Artificial Intelligence- A Modern Approach", Pearson-3rd edition, 2010.

REFERENCES

- 1. Nilsson, N.J., "Principles of AP', Narosa Publishing House, 1990.
- 2. Patterson, D. W., "Introduction to AI and Expert Systems", Prentice Hall of India, 1992.
- 3. Peter Jackson, "Introduction to Expert Systems", Addison Wesley Publishing Company, M.A., 1992
- 4. Rich, E., and Knight, K., "Artificial Intelligence", Tata McGraw Hill (2nd Edition), 1992.
- 5. Schalk off, R.J., "Artificial Intelligence An Engineering Approach", McGraw Hill International Edition, Singapore, 1992.
- 6. Sasikumar, M., Ramani, S., "Rule Based Expert System", Narosa Publishing House, 1994.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	2	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	14	13	10	10	10	5	10	10	13	13
Course	3	3	2	2	2	1	1	1	3	3

YCA302-GRAPHICS AND MULTIMEDIA

Course Outcomes:

CO1	C	Knowledge	Describe various	methods to	define	line-drawin	g algorithms
-----	---	-----------	-------------------------	------------	--------	-------------	--------------

CO2 C Understand *Understand* and apply 2d and 3d transformations

CO3 C Knowledge **Describe** and **apply** various types multimedia applications

CO4 C Understand **Describe** and **solve** problems in development tools

CO5 C Understand *Understand*hypermedia

COURSE CODE	COURSE NAME	L	Т	P	C
YCA302	Graphics and Multimedia	3	0	0	3
C:P:A = 3:0:0					
		L	Т	Р	Н
		3	0	0	3

UNIT -I :OUTPUT PRIMITIVES

09

Points and lines – Line-drawing algorithms – DDA algorithm – Bresenham's line algorithm – Attributes of output primitives: Line attributes – Area-fill attributes – Character attributes – Bundled attributes

UNIT- II: 2D AND 3D TRANSFORMATIONS

09

Two-dimensional Geometric transformations: Basic transformations – Matrix representations – Composite transformations – Three-Dimensional object representations – Three-Dimensional geometric and modeling transformations – Three-Dimensional viewing – Hidden surface elimination – Color models – Virtual reality – Animation

UNIT- III: MUTLIMEDIA

09

Multimedia basics – Multimedia applications – Multimedia system architecture – Evolving technologies for multimedia – Defining objects for multimedia systems – Multimedia data interface standards – Multimedia databases

UNIT-IV: MULTIMEDIA

09

Technology: Development Tools – Image – Audio – Video- Compression and decompression – Data and file format standards – Multimedia I/O technologies – Digital voice and audio – Video image and animation – Full motion video – Storage and retrieval technologies

UNIT- V: HYPERMEDIA

09

Multimedia authoring and user interface – Hypermedia messaging – Mobile messaging – Hypermedia message component – Creating hypermedia message – Integrated multimedia message standards – Integrated document management – Distributed multimedia systems

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT

- 1. Donald Hearn and M.Pauline Baker, Computer Graphics in C Version, Fifth Edition, Pearson Education, 2015.
- 2. Andleigh, P. K and Kiran Thakrar, Multimedia Systems and Design, PHI, 2003.
- 3. Judith Jeffcoate, Multimedia in Practice: Technology and Practice., Pearson Education,

2014

REFERENCES

- 1. William M. Neuman, Robert R. Sprout, Principles of interactive Computer Graphics, McGraw Hill International Edition.
- 2. Buford J. F Koegel, Multimedia Systems, Twelfth Indian Reprint, Pearson Education

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	3	3	3	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	3	2	2	2	1	2	2	3	3
CO 4	3	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	15	14	11	11	11	5	10	10	13	13
Course	3	3	3	3	3	1	1	1	3	3

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCA303- OPTIMIZATION TECHNIQUES

Course Outcomes:

CO1	C	Knowledge	Describe various methods to define simplex method
CO2	C	Understand	Understand and apply branch and bound method.

CO3 C Knowledge **Describe** and **apply** various queuing theory

CO₄ C Understand **Describe** and **solve** problems in inventory theory

CO₅ C Understand UnderstandPERT and CPMpath.

COURSE CODE	COURSE NAME	L	T	P	C
YCA303	Optimization Techniques Linear	4	0	0	4
	Programming				
C:P:A = 4:0:0					
		L	T	P	Н
		4	0	0	4

UNIT- I: Introduction to Optimization Techniques

12

Graphical method for two dimensional problems - Central problem of linear programming various definitions - statements of basic theorems and properties - Phase I and Phase II of the simplex method - revised simplex method - primal and dual - dual simplex method.

UNIT- II: Integer Programming

12

Sensitivity analysis transportation problem and its solution - assignment problem and its solution by Hungarian method- Gomorra cutting plane methods - Branch and Bound method

UNIT- III: Queuing Theory

12

Characteristics of queuing systems - steady state Mimi, MlMit/K and MIMIC queueing models- Replacement of items that deteriorate - Replacement of items that fail Group replacement and individual replacement.

UNIT- IV: Inventory Theory

12

Costs involved in inventory problems - single item deterministic models-economic lot size models without shortages and with shortages having production rate infinite and finite.

UNIT- V: PERT and CPM

12

Arrow networks - time estimates- earliest expected time, latest allowable occurrence time and slack - critical path - probability of meeting scheduled date of completion of project-calculations on CPM network - various floats for activities - critical path - updating project - operation time cost trade off curve - project time cost trade off curve - selection of schedule based on cost analysis.

LECTURE	TUTORIAL	TOTAL
60	0	60

TEXT

1. Hamdy A.TAHA.,"Operations research- An Introduction", 8thedition, Pearson Education,Inc,2007.

REFERENCES

- 1. Karnbo, N.S., "Mathematical Programming Techniques", McGraw Hill, New York. 1985.
- 2. Kanti Swarup, Gupta, P.K., and Man Mohan, "Operations Research", Sultan Chand & Sons-New Delhi. 1990.
- 3. Mital K. V., "Optimization Methods In Operations Research and System Analysis", New Age International (P) Ltd., New Delhi, 1992.
- 4. Saffer, L.R., Fitter J.B., and MeyerW.L., "The Critical Path Method". McGraw Hill. New York. 1990.
- 5. Taha, H.A., "Operations research- An Introduction", McMillan Publishing co .• New York, 1986.
- 6. Gillet, B.E., "Introduction to Operations Research : A Computer Oriented Algorithmic Approach". Tata McGraw Hill, New York, 1990.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO
									1	2
CO 1	2	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	2	2	2	2	2	1	1	1	2	2
CO 5	3	2	2	2	2	1	1	1	2	2
Total	13	13	10	10	10	5	5	5	10	10
Course	3	3	2	2	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA304- ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LAB

Course Outcomes:

CO1	P	Guided	<i>Manipulate</i> various methods to define AI techniques
		Response	
CO2	P	Set	Starts and apply set theory and Relations
CO3	P	Guided	Develop and implement various counting and Predicate Logic
		Response	
CO4	P	Guided	Develop and solve problems in Probabilistic reasoning
		Response	
CO5	P	Set	BuildConcept of learning the expert systems

COURSE CODE	COURSE NAME	L	T	P	C
YCA304	Artificial Intelligence and Machine Learning Lab	0	0	3	2
C:P:A = 0:2:0					
		L	Т	P	H
		0	0	0	3
					A.E

45

- 1. Switches, Lights, and Multiplexers
- 2. Numbers and Displays
- 3. Latches, Flip-flops, and Registers
- 4. Counters
- 5. Timers and Real-Time Clock
- 6. Adders, Subtractors, and Multipliers
- 7. Finite State Machines
- 8. Memory Blocks
- 9. A Simple Processor
- 10. An Enhanced Processor

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	1	1	1	1	2	2
CO 2	2	1	1	1	1	1	1	1	2	2
CO 3	2	1	2	1	1	2	2	1	2	2
CO 4	2	2	1	1	2	1	1	2	2	2
CO 5	1	1	1	1	1	1	1	1	2	2
Total	09	06	06	05	06	06	06	06	10	10
Course	3	2	2	1	2	2	2	2	3	3

2- Medium relation 1- Low relation

YCA305-OPTIMIZATION TECHNIQUES LAB

Course Outcomes:

CO₁ P Guided *Manipulate* various methods to define simplex method Response Starts and apply branch and bound method. CO₂ P Set CO₃ P Guided **Develop** and **implement** various queuing theory Response CO₄ P Guided **Develop** and **solve**problems in inventory theory Response

COURSE CODE	COURSE NAME	${f L}$	Т	P	C
YCA305	Optimization Techniques Lab	0	0	4	2
C:P:A = 0:2:0					
		L	T	P	Н
		0	0	4	4
		į	İ		60

To develop computer programs for the following and to test with suitable numerical examples

- 1. Graphical method to solve two dimensional Linear Programming Problem.
- 2. Revised Simplex method to solve n-dimensional Linear Programming Problem
- 3. Dual Simplex method to solve n-dimensional Linear Programming Problem.
- 4. Solution of Transportation problem.
- 5. Gomory cutting plane methods for Integer Programming Problems

- 6. Branch and Bound method to solve Integer Programming Problem.
- 7. M/M/1/N AND M/M/C queuing problems.
- 8. Single item deterministic inventory model problems with/without shortage and finite/infinite production rate.
- 9. To draw the PERT/CPM networks.
- 10. Calculations of PERT analysis
- 11. Calculation of CPM analysis.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	1	1	1	1	2	2
CO 2	2	1	1	1	1	1	1	1	2	2
CO 3	2	1	2	1	1	2	2	1	2	2
CO 4	2	2	1	1	2	1	1	2	2	2
CO 5	1	1	1	1	1	1	1	1	2	2
Total	09	06	06	05	06	06	06	06	10	10
Course	3	2	2	1	2	2	2	2	3	3

2- Medium relation 1- I

1- Low relation

COURSECODE	COURSE NAME	L	T	P	C
YCA306	Industrials Lectures	0	0	2	2
C:P:A = 0:2:0					
		L	T	P	H
		0	0	2	2

CO1 P Guided Response Identifying the Recent Technologies

CO2 P Guided Response Preparing the content/Arranging the Seminar

CO3 P Guided Response Attending the Lectures
CO4 P Guided Response Implementing the Lectures
CO5 P Guided Response Answer the Question

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3

CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

2- Medium relation

1- Low relation

COURSECODE	COURSE NAME	L	T	P	C
YCA307	Mini Project	0	0	3	2
C:P:A = 0:2:0					
		L	T	P	H
		0	0	3	3

CO₁ P **Guided Response** Practice the Requirements Analysis CO₂ P **Guided Response** Create the Design for their project

CO₃ P Guided Response Create the Coding CO₄ P **Guided Response** Plan for Testing Solve the Conclusion CO₅ P Guided Response

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

COURSECODE	COURSE NAME	L	T	P	C
YCA401	Research Methodology(Paper Publications)	0	0	3	3
C:P:A = 0:3:0					
		L	T	P	H
		0	0	3	3

CO₁ P **Guided Response** Identifying the Topic

Guided Response Preparing the content/Arranging the Seminar CO₂ P

CO₃ P Guided Response Presenting the content Guided Response Addressing the Audience CO₄ P CO₅ P **Guided Response** Answer the Question

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

COURSECODE	COURSE NAME	L	T	P	C
YCA402	Project Work	0	0	6	12
C:P:A = 0:3:2					
		L	T	P	H
		0	0	6	6

CO1 P Guided Response Practice the Requirements Analysis
 CO2 P Guided Response Develop the Design of the project

CO3 P Guided Response Create the Coding CO4 P Guided Response Plan for Testing

CO5 P Guided Response Solve the problem and Write Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCAEE1 DATA MINING AND DATA WAREHOUSING

Course Outcomes:

CO1	C	Understand	Explain the concepts of data mining
CO2	C	Understand	Describe and implement the concept of association rule
			mining
CO3	C	Understand	Describe and implement the concept of classification and
			clustering the datasets.
CO4	C	Understand	Describe and implement various types data warehouse tools
CO5	C	Understand	illustrate the different types of mining concepts and its
			applications

COURSE CODE	COURSE NAME	L	T	P	C	
YCAEE1	DATA MINING AND DATA	4	4 0		4	
	WAREHOUSING					
C:P:A = 4:0:0						
		L	T	P	Η	
		4	0	0	4	
UNIT I FUNDAME	NTALS	<u>.</u>	L T P 4 0 0			

Fundamentals of Statistics – Databases – Data Mining Functionalities – Steps in Data Mining Process– Architecture of a typical Data Mining Systems – Classification of Data Mining Systems –Overview of Data Mining Techniques-Major issues in data mining.

UNIT IIDATA PREPROCESSING AND ASSOCIATION RULES

Data Pre-processing: Data Cleaning— Data Integration— Data Transformation — Data Reduction— Concept Hierarchies — Concept Description— Data Generalization — Data Summarization— Data Characterization— Mining Association Rules in Large Databases.

UNIT IIIPREDICTIVE MODELING

12

12

Classification and Prediction Issues Regarding Classification and Prediction—Classification by Decision Tree Induction – Bayesian Classification – Other Classification Methods – Prediction – Clusters Analysis Types of Data in Cluster Analysis – Categorization of Major Clustering Methods Partitioning Methods – Hierarchical Methods

UNIT IVDATA WAREHOUSING

12

Data Warehousing Components – Multi Dimensional Data Model – Data Warehouse Architecture – Data Warehouse Implementation – Mapping the Data Warehouse to Multiprocessor Architecture – OLAP – Need – Categorization of OLAP Tools.

UNIT V APPLICATIONS

12

Applications of Data Mining – Social Impacts of Data Mining – Tools – An Introduction to DB Miner – Case Studies – Mining WWW – Mining Text Database – Mining Spatial Databases.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
60	-	-	60

TEXT

1. Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann Publishers, 2002.

REFERENCES

- 1. Alex Berson and Stephen J. Smith, Data Warehousing- Data Mining & OLAP, TMH, 2011.
- 2. Usama M.Fayyad et. Al., Advances in Knowledge Discovery and Data Mining, The

M.I.T Press, 2009.

3. Ralph Kimball, The Data Warehouse Life Cycle Toolkit, John Wiley & Sons Inc., 2008.

E REFERENCES

- 1. https://www.tacoma.uw.edu/sites/default/files/sections/InstituteTechnology/TCSS555_Dat-amining.pdf
- 2. http://www.kdnuggets.com/data_mining_course/syllabus.html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	0	1	0	2	0	0	1	3
CO 2	3	2	1	1	0	0	2	0	1	2
CO 3	2	2	1	2	0	0	2	0	0	2
CO 4	2	0	2	1	0	0	2	0	2	2
CO 5	2	0	2	2	0	0	0	0	2	2
Total	12	6	6	7	0	2	6	0	6	11
Course	3	2	2	2	0	1	2	0	2	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCABM4- INVESTMENT TECHNOLOGY

Course Outcomes:

CO1	C	Knowledge	Describe	various	methods	to	define	Source	of	investment		
			informatio	on								
CO2	C	Understand	Understan	<i>id</i> and ap	ply set <i>In</i>	tere	st Rates	;				
CO3	C	Knowledge	Describe a	Describe and apply various Shares and Valuation								
CO4	C	Understand	Describe a	and <i>solve</i>	problems	in .	Portfoli	o Theory	,			
CO5	C	Understand	Understan	<i>id</i> Conce _l	pt of learn	ing	the <i>Mut</i>	tual Fun	ds			

COURSE CODE	COURSE NAME	L	T	P	C
YCABM4	Investment Technology	3	0	0	3
C:P:A = 3:0:0					
		L	Т	P	Н
		3	0	0	3

UNIT- I:Investment Information-Introduction

Source of investment information -Valuation of debt securities: Debt prices and interest rate risk-Default risk and purchasing power risk.

UNIT- II:Interest Rates

9

Market interest rates - term structure of interest rates- Valuation of warrants-convertibles-Option pricing models.

UNIT-III: Shares and Valuation

9

Valuation of equity shares: Dividends and valuation: MMS arguments, fundamental analysis-Earning multipliers-Timing of purchase -sale of equity shares-Estimating earnings and risk.

UNIT- IV: Portfolio Theory

Portfolio theory- Efficient investments –diversification-Markowitz graphical portfolio analysis-Capital market theory- Portfolio performance evaluation- sharpe.

UNIT- V: Mutual Funds

Treynor- Jenson measures- Mutual funds - kinds and evaluation-Behaviour of share prices technical analysis-The efficient markets-Hypothesis - random walk and Martingale methods.

 LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT

1. Clark N..et. al. "Financial Management: A Capital Market Approach". Helbrook,

REFERENCES

2. Sharpe. W.F., "Investments". Prentice Hall of India. New Delhi. 1996.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	1	2	1	1	1	2	2
CO 2	2	2	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	2	1	1	2	1	1	1	2	2
Total	10	10	6	5	10	5	5	5	10	10
Course	2	2	1	1	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation